I SL8500EVAL2Z 2A Negative Output Buck-Boost Converter

Description

The ISL8500EVAL2Z REV A kit is intended for use by individuals with requirements for Point-of-Load applications sourcing from 9 V to 14 V . The ISL8500EVAL2Z evaluation board is used to demonstrate the performance of the ISL8500 standard buck-boost regulator.

The ISL8500 is offered in a 4 mmx 3 mm 12 Ld DFN package with 1 mm maximum height. The complete converter occupies less than $0.385 \mathrm{in}^{2}$ area.

Features

- Standard Buck Controller with Integrated Switching Power MOSFET
- Integrated Boot Diode
- Input Voltage Range
- Variable 9V tol4V
- PWM Output Voltage Adjustable from -12.6V to
-0.6V with Continuous Output Current up to 2A
- Voltage Mode Control with Voltage Feed Forward
- Fixed 500 kHz Switching Frequency
- Externally Adjustable Soft-Start Time
- Output Undervoltage Protection
- PGOOD Output
- Overcurrent Protection
- Thermal Overload Protection
- Internal 5V LDO regulator

Applications

- General Purpose
- Hand-Held Instruments

What's Inside

The Evaluation Board Kit contains the following materials:

- The ISL8500 EVAL2Z REV A Board
- The ISL8500 Datasheet
- This EVAL KIT Document

Recommended Equipment

The following materials are recommended to perform testing:

- $0 V$ to 15 V power supply with at least 5 A source current capability, battery, notebook AC adapter
- One electronic load capable of sinking current up to 5A
- Digital Multimeters (DMMs)
- 100 MHz quad-trace oscilloscope
- Signal generator

Quick Set-up Guide

1. Ensure that the circuit is correctly connected to the supply and loads prior to applying any power.
2. Connect the bias supply to $\mathrm{V}_{I N}$, the plus terminal to TP1 (VIN) and the negative return to TP2 (GND).
3. Verify that SW1 is on ENABLE.
4. Turn on the power supply.
5. Verify the PG is on and the output voltage is 2.5 V for VOUT(TP3).

Evaluating the Other Output Voltage

The ISL8500EVAL kit outputs are preset to -12 V ; however, it can be programmed using resistor dividers using Equation 1 :
$R_{4}=\frac{R_{2} \cdot 0.6 \mathrm{~V}}{\left|\mathrm{~V}_{\text {OUT }}\right|^{-0.6 V}}$
The output voltage programming resistor R_{2} will depend on on the feedback resistor R_{1}, as referred to in Figure 1 . The value of R_{1} is typically between $1 k \Omega$ and $10 \mathrm{k} \Omega$ If the output voltage desired is 0.6 V , then R_{2} is left opened.

FIGURE 1. EXTERNAL RESISTOR DIVIDER
TABLE 1. SWITCH 1 SETTINGS

SW1	ENABLE	OPERATI NG MODE
1	SW1	Enable or disable the buck controller

Schematic

Application Note 1500

I SL8500EVAL2Z Bill of Materials

PART NUMBER	QTY	UNITS	REFERENCE DESI GNATOR	DESCRIPTI ON	MFTR	MANUFACTURER PART
ISL8500EVAL2ZREVAPCB	1	ea		PWB-PCB, ISL8500EVAL2Z, REVA, ROHS	TITAN	ISL8500EVAL2ZREVAPCB
H1044-00103-50V10-T	1	ea	C1	CAP, SMD, 0402, 10nF, 50V, 10\%, X7R, ROHS	PANASONIC	ECJ -0EB1H103K
H1065-00106-25V10-T	2	ea	C10, C11	CAP, SMD, 1206, 10 1 F, $25 \mathrm{~V}, 10 \%$, X5R, ROHS	VENKEL	C1206X5R250-106KNE
DNP	0	ea	C13, C20, C21	DO NOT POPULATE OR PURCHASE		
H1082-00476-16V20-T	1	ea	C12	CAP, SMD, 1210, 47 $\mu \mathrm{F}$, 16V, 20\%, X5R, ROHS	TDK	C3225X5R1C476M
					PANASONIC	ECJ -4YB1E476M
					AVX	1210YD476MAT
H1044-00151-50V5-T	1	ea	C2	CAP, SMD, 0402, 150pF, 50V, 5\%, NPO, ROHS	VENKEL	C0402COG500-151JNE
H1044-00222-50V10-T	1	ea	C3	$\begin{aligned} & \text { CAP, SMD, 0402, 2200pF, } \\ & \text { 50V, 10\%, X7R, ROHS } \end{aligned}$	PANASONIC	ECJ-0EB1H222K
					VENKEL	C0402X74500-471KNE
H1045-00105-6R3V10-T	2	ea	C4, C8	CAP, SMD, 0603, $1 \mu \mathrm{~F}$, 6.3V, 10\%, X5R, ROHS	PANASONIC	ECJ 1VB0J 105K
C1608X7R1H104K-T	1	ea	C9	CAPACITOR, SMD, 0603, $0.10 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, X7R	TDK	C1608X7R1H104K
B340LB-13-F-T	1	ea	D1	DIODE-SCHOTTKY SMD, SMB, 2P, 40V, 3A LOW VF, ROHS	DIODES INC.	B340LB-13-F
DNP	0	ea	D3	DO NOT POPULATE OR PURCHASE		
IHLP2525CZRZ220M01	1	ea	L1	COIL-PWR INDUCTOR, SMD, $6.9 \times 6.5,22 \mu \mathrm{H}$, 20\%, 2.5A, ROHS	VISHAY	IHLP2525CZRZ220M01
DNP	0	ea	Q4	DO NOT POPULATE OR PURCHASE		
H2510-05111-1/16W1-T	1	ea	R1	RES, SMD, 0402, 5.11k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF5111X
					VENKEL	CR0402-16W-5111FT
H2510-01003-1/16W1-T	1	ea	R12	RES, SMD, 0402, 100k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ 2RKF1003
H2510-02002-1/16W1-T	1	ea	R2	RES, SMD, 0402, 20k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF2002
					VENKEL	CR0402-16W-2002FT
DNP	0	ea	R20	DO NOT POPULATE OR PURCHASE		
H2511-01002-1/10W1-T	1	ea	R21	RES, SMD, 0603, 10k, 1/10W, 1\%, TF, ROHS	KOA	RK73H1JT1002F
					VENKEL	CR0603-10W-1002FT
H2510-06980-1/16W1-T	1	ea	R3	RES, SMD, 0402, 698 Ω 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF6980X
					VENKEL	CR0402-16W-6980-FT

I SL8500EVAL2Z Bill of Materials (Continued)

PART NUMBER	QTY	UNITS	REFERENCE DESI GNATOR	DESCRIPTION	MFTR	MANUFACTURER PART
H2511-DNP	0	ea	R30	RES, SMD, 0603, DNPPLACE HOLDER, ROHS		
H2510-01051-1/16W1-T	1	ea	R4	RES, SMD, 0402, 1.05k, 1/16W, 1\%, TF, ROHS	VENKEL	CR0402-16W-1051FT
					PANASONIC	ERJ-2RKF1051X
					VISHAY/DALE	CRCW04021K05FKED
131-4353-00	2	ea	SP1, SP2	CONN-SCOPE PROBE TEST PT, COMPACT, PCB MNT, ROHS	TEKTRONIX	131-4353-00
GT11MSCBE-T	1	ea	SW1	SWITCH-TOGGLE, SMD, ULTRAMINI, 1P, SPST MINI	C\&K COMPONENTS	GT11MSCKE
5002	2	ea	TP13, TP16	CONN-MINI TEST POINT, VERTICAL, WHITE, ROHS	KEYSTONE	5002
1514-2	4	ea	TP1-TP4	CONN-TURRET, TERMINAL POST, TH, ROHS	KEYSTONE	1514-2
ISL8500IRZ	1	ea	U1	IC-2A BUCK REGULATOR, 12P, DFN, 4×3, ROHS	INTERSIL	ISL8500IRZ

I SL8500EVAL2Z Board Layout

I SL8500EVAL2Z Board Layout (continued)

FI GURE 3. TOP LAYER ETCH

I SL8500EVAL2Z Board Layout (continued)

FI GURE 4. 2nd LAYER ETCH

Application Note 1500

I SL8500EVAL2Z Board Layout (Continued)

FIGURE 5. 3rd LAYER ETCH

I SL8500EVAL2Z Board Layout (Continued)

FIGURE 6. BOTTOM LAYER ETCH (Mirrored)

Theory of Operation

The ISL8500 in this configuration is a non-sysnchronous positive to negative switching regulator which can handle input voltages above, below, or equal to the absolute value of the output. The ISL8500EVAL2Z circuit design is optimized for 12 V input to -12 V output applications. The regulator operates at 500 kHz fixed switching frequency, F_{S}, under heavy load conditions to allow smaller external inductors and capacitors to be used for minimal printed-circuit board (PCB) area. At light load, the regulator reduces the switching frequency by skipping pulses to maintain regulation and increase efficiency.
The principle of operation is shown in Figure 7 and uses the energy storage of the inductor L during the on period, and then transfers the energy through the free wheeling diode, D , to the output. When the HS MOSFET switch turns on, the diode is reverse biased, and the inductor current will ramp up. When the switch is off, as shown in Figure 8, the inductor will reverse its polarity to maintain its peak current. The forward biased diode and the stored energy of the inductor gets transferred to the load and the output capacitor. Since the voltage of the inductor is negative with respect to GND, the output voltage across the capacitor will be negative. This type of converter can step up and down the magnitude of the input voltage. Therefore, this circuit is called a buck-boost converter. For steady state operation, the volt-second of the inductor must equal, $\mathrm{DV}_{\mathrm{L}}=(1-\mathrm{D}) \mathrm{V}_{\mathrm{L}}$. V_{L} is equal to $\mathrm{V}_{\text {IN }}$ during the $O N$ time and V_{L} is equal to $-V_{\text {OUT }}$ during the OFF time. Therefore, the DC steady state transfer is $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}=-\mathrm{D} /(1-\mathrm{D})$. Figure 9 is the voltage and current waveforms.

dURING THE ON TIME

FIGURE 7. VOLTAGE ACROSS THE ELEMENT DURI NG THE ON TIME

Equation 2 for Figure 7:

$$
\begin{align*}
& V_{\mathrm{L}}=\mathrm{V}_{\mathrm{IN}} \\
& \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{IN}}+\mathrm{V}_{\mathrm{OUT}} \tag{EQ.2}\\
& \mathrm{~V}_{\mathrm{HS}} \approx 0 \mathrm{~V}
\end{align*}
$$

FI GURE 8. VOLTAGE ACROSS THE ELEMENT DURING THE OFF TIME

Equation 3 for Figure 8:
$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\text {OUT }}$
$v_{D} \approx 0 V$
$\mathrm{V}_{\mathrm{HS}}=\mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {OUT }}$

FIGURE 9. SIMPLI FICATI ON OF THE BUCK BOOST CONVERTER
Equation 4 for Figure 9:
$\mathrm{D}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {OUT }}}$
$\mathrm{I}_{\text {LAVE }}=\operatorname{IOUT}\left(1+\frac{\mathrm{D}}{1-\mathrm{D}}\right)$
$\Delta L_{L}=V_{I N} \cdot \frac{D}{L \cdot F_{S}}$

Component Selection

This section will detail the calculation and selection of the components. Calculations are done in continuous operation mode.

I nductor Selection

From Equation 3 and ignoring the diode V_{D} and $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$ of the FET, the duty cycle is shown in Equation 5.
$D \approx \frac{\left|V_{\text {OUT }}\right|}{V_{\text {IN }}+\left|V_{\text {OUT }}\right|}$
For this example, D is $12 \mathrm{~V} /(12 \mathrm{~V}+12 \mathrm{~V})=0.5$.
The average inductor current is shown in Equation 6.
$I_{\text {LAVE }}=I_{\text {OUT }}\left(1+\frac{D}{1-D}\right)=I_{\text {OUT }}\left(\frac{1}{1-D}\right)$
The higher or lower inductor value can be used to optimize the total converter system performance. For example, for higher output voltage application, in order to decrease the inductor current ripple and output voltage ripple, the output inductor value can be increased. It is recommended to set the ripple inductor current approximately 20% to 30% of the maximum average inductor current for optimized performance. The inductor ripple current can be expressed as shown in Equation 7:

$$
\begin{equation*}
L=\frac{V_{\text {IN }} \cdot V_{\text {OUT }}}{\left(V_{\text {IN }}+V_{\text {OUT }}\right)\left(0.3 \cdot I_{\text {LAVE }}\right) \cdot f_{S}} \tag{EQ.7}
\end{equation*}
$$

where f_{s} is the switching frequency. The inductor's saturation current rating needs to be at least larger than the peak current. The ISL8500 protects the typical peak current 3.1A. The saturation current needs be over 4A for maximum output current application. For I OUT of 1 A , the inductor L is $24 \mu \mathrm{H}$. Then use $22 \mu \mathrm{H}$.

Diode Selection

The free wheeling diode had to be able to handle the maximum voltage and current stress. The voltage stress is equal to $\mathrm{V}_{\text {IN }}$ plus $\mathrm{V}_{\text {OUT }}$ and the current stress is $l_{\text {lave }}+0.5 \Delta \mathrm{I}_{\mathrm{L}}$. The power dissipation is shown in Equation 8.

$$
\begin{equation*}
P_{D}=\left(I_{L A V E}+0.5 \Delta I_{L}\right) \cdot V_{D} \cdot(1+D) \tag{EQ.8}
\end{equation*}
$$

where V_{D} is the forward voltage of the diode. This value is typically 0.5 V for 3 A Schottky diode. A 30 V or 40 V 3 A , B340LB is a good choice.

Output Capacitor Selection

The output capacitor has to be selected based on its $R_{E S R}$ value, and the capacitance must be high enough to hold the charges for the load during the off time. The output ripple is shown in Equation 9.

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{OUT}}=\mathrm{R}_{\mathrm{ESR}} \cdot\left(\mathrm{I}_{\mathrm{LAVE}}+0.5 \Delta \mathrm{I}_{\mathrm{L}}\right) \tag{EQ.9}
\end{equation*}
$$

where $\Delta \mathrm{V}_{\text {OUT }}$ is the desired output ripple. The minimum output capacitor value for tis output ripple is shown in Equation 10.

$$
\begin{equation*}
\mathrm{C}_{\text {OUT }}=\frac{\mathrm{l}_{\mathrm{OUT}} \cdot \mathrm{D}}{\mathrm{f}_{\mathrm{S}} \cdot \Delta \mathrm{~V}_{\mathrm{OUT}}} \tag{EQ.10}
\end{equation*}
$$

Use $47 \mu \mathrm{~F} 16 \mathrm{~V}$ ceramic for this example.

I nput Capacitor Selection

The main functions for the input capacitor are to provide decoupling of the parasitic inductance and to provide filtering function to prevent the switching current flowing back to the battery rail. Two $10 \mu \mathrm{~F}$ X5R or X7R ceramic capacitors are a good starting point for the input capacitor selection. One capacitor connecting from $V_{I N}$ to $-\mathrm{V}_{\text {OUT }}$ and another one connecting from $\mathrm{V}_{\text {IN }}$ to GND.

Compensation Selection

The buck-boost typology is difficult to stabilize because it has a right-half-plane zero in its control to output transfer function. The small signal AC model of the buck-boost power section in relationship to $d(s)$ is shown in Figure 10.

FIGURE 10. SMALL SIGNAL AC MODEL

To solve the power transfer function, see Equation 11.

$$
\begin{equation*}
H(S)=\frac{\hat{V}_{O U T}(S)}{\hat{d}(S)}=-\frac{V_{I N}-V_{O U T}}{1-D}\left(\frac{1-\frac{S L I}{(1-D)\left(V_{\text {IN }}-V_{O U T}\right)}}{1+\frac{S L}{(1-D)^{2} R}+\frac{S^{2} L C}{(1-D)^{2}}}\right) \tag{EQ.11}
\end{equation*}
$$

The salent characteristics are shown in Equation 12.

$$
\begin{align*}
& H(0)=-\frac{V_{\text {IN }}-V_{\text {OUT }}}{1-D}=\frac{V_{\text {OUT }}}{D(1-D)}=\frac{12 \mathrm{~V}}{0.5 \cdot 0.5}=48 \\
& \rightarrow \mathrm{H}(0)=33.8 \mathrm{~dB} \\
& \omega_{Z}=\frac{(1-D)\left(V_{I N}-V_{O U T}\right)}{L I}=\frac{(1-D)^{2} R}{D L} \quad \text {, this is RHPZ } \\
& \omega_{Z}=\frac{0.5^{2} \cdot 12 \Omega}{22 \mu \mathrm{H} \cdot 1 \mathrm{~A}}=136 \times 10^{3} \rightarrow \mathrm{~F}_{\mathrm{Z}}=43.4 \times 10^{3} \mathrm{~Hz} \\
& \mathrm{Q}=(1-\mathrm{D}) \mathrm{R} \sqrt{\frac{\mathrm{C}}{\mathrm{~L}}}=0.5 \cdot 12 \Omega \cdot \sqrt{\frac{44 \mu \mathrm{~F}}{22 \mu \mathrm{H}}}=8.77 \tag{EQ.12}\\
& \rightarrow \mathrm{Q}=18.9 \mathrm{~dB} \\
& \omega_{L C}=\frac{(1-D)}{\sqrt{L C}}=\frac{0.5}{\sqrt{22 \mu \mathrm{H} \cdot 47 \mu \mathrm{~F}}}=12 \times 10^{3} \\
& \rightarrow \mathrm{~F}_{\mathrm{LC}}=2.4 \mathrm{kHz}
\end{align*}
$$

FIGURE 11. GAIN ON H(S) IN dB

FIGURE 12. PHASE OF H(S) IN ${ }^{\circ}$

FIGURE 13. DETAI LED COMPENSATI ON NETWORK

The compensation network consists of the error amplifier (internal to the ISL8500) and the impedance networks. The goal of the compensation network is to provide a closed loop transfer function with the highest 0 dB crossing frequency ($\mathrm{f}_{0 \mathrm{~dB}}$) and adequate phase margin.

From the transfer function, there is a right-half-plane-zero. Therefore, it is highly recommended to insure that the crossover frequency, F_{C}, is well before the F_{z}. Figures 11 and 12 are the bode plot of the gain and phase for $\mathrm{H}(\mathrm{S})$.

Phase margin is the difference between the closed loop phase at $\mathrm{f}_{0 \mathrm{~dB}}$ and 180°. Equation 13 relates the compensation network's poles, zeros and gain to the components ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3}) in Figure 14. Use the following guidelines for locating the poles and zeros of the compensation network:

1. Pick Gain (R_{2} / R_{1}) for converter bandwidth ($\sim 30 \%$ FZ).
2. Place $1^{\text {ST }}$ Zero Below Filter's Double Pole ($\sim 30 \%$ FLC).
3. Place $2^{N D}$ Zero at Filter's Double Pole.
4. Place $1^{\text {ST }}$ Pole at half the Switching Frequency.
5. Place $2^{\text {ND }}$ Pole at the 2.5 x of RHP Zero.
6. Check Gain against Error Amplifier's Open-Loop Gain.
Estimate Phase Margin - Repeat if Necessary.

Compensation Break Frequency Equations

$F_{Z 1}=\frac{1}{2 \pi \times R_{2} \times C_{2}}$

$$
\mathrm{F}_{\mathrm{P} 1}=\frac{1}{2 \pi \times \mathrm{R}_{2} \times\left(\frac{\mathrm{C}_{1} \times \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}\right)}
$$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{Z} 2}=\frac{1}{2 \pi \times\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right) \times \mathrm{C}_{3}} \quad \mathrm{~F}_{\mathrm{P} 2}=\frac{1}{2 \pi \times \mathrm{R}_{3} \times \mathrm{C}_{3}} \tag{EQ.13}
\end{equation*}
$$

Figures 14 and 15 shows the bode plot of the gain and phase for the closed loop response.

FIGURE 14. GAI N OF CLOSED LOOP IN dB

FIGURE 15. PHASE OF CLOSED LOOP IN ${ }^{\circ}$

The compensation gain uses external impedance networks $Z_{F B}$ and $Z_{I N}$ to provide a stable, high bandwidth (BW) overall loop. A stable control loop has a gain crossing with -20 dB /decade slope, and a phase margin greater than 40°. Include worst case component variations when determining phase margin.

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

Typical Performace Curves
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified, operating conditions are: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{EN}=\mathrm{V}_{\mathrm{DD}}, \mathrm{L}=22 \mu \mathrm{H}, \mathrm{C} 12=100 \mu \mathrm{~F}$, $\mathrm{C} 10=\mathrm{C} 11=10 \mu \mathrm{~F}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to 1 A .

FIGURE 16. EFFICI ENCY vs LOAD

FIGURE 18. Vout REGULATI ON vs LOAD

IL 0.5A/DIV

FIGURE 17. POWER DISSI PATION vs LOAD

FIGURE 19. OUTPUT VOLTAGE REGULATION vs VIN

Application Note 1500

Typical Performace Curves
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified, operating conditions are:
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{EN}=\mathrm{V}_{\mathrm{DD}}, \mathrm{L}=22 \mu \mathrm{H}, \mathrm{C} 12=100 \mu \mathrm{~F}$, $\mathrm{C} 10=\mathrm{C} 11=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~A}$ to 1 A . (Continued)

FIGURE 22. LOAD TRANSIENT

FIGURE 24. SOFT-START AT FULL LOAD

FIGURE 26. OUTPUT SHORT CIRCUIT

FIGURE 25. SHUT-DOWN CIRCUIT

[^0]: Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding.

