

WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2005 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:
Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for
commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax
products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Boe-Bot SumoBot, SX-Key and Toddler are registered trademarks of Parallax, Inc.
If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must state
that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the trademark
name in each printed document or web page. HomeWork Board, Parallax, and the Parallax logo are trademarks of
Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in printed material, you must state
that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the trademark name in each printed
document or web page. Other brand and product names are trademarks or registered trademarks of their respective
holders.

ISBN 1-928982-35-2

DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

INTERNET DISCUSSION LISTS

We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com.

. Propeller Chip — This list is specifically for our customers using Propeller chips and products.

e BASIC Stamp — This list is widely utilized by engineers, hobbyists and students who share their
BASIC Stamp projects and ask questions.

. Stamps in Class® — Created for educators and students, subscribers discuss the use of the Stamps in
Class curriculum in their courses. The list provides an opportunity for both students and educators to
ask questions and get answers.

. Parallax Educators — A private forum exclusively for educators and those who contribute to the
development of Stamps in Class. Parallax created this group to obtain feedback on our curricula and
to provide a place for educators to develop and obtain Teacher’s Guides.

. Robotics — Designed for Parallax robots, this forum is intended to be an open dialogue for robotics
enthusiasts. Topics include assembly, source code, expansion, and manual updates. The Boe-Bot®,
Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

. SX Microcontrollers and SX-Key — Discussion of programming the SX microcontroller with
Parallax assembly language SX — Key® tools and 3rd party BASIC and C compilers.

e Javelin Stamp — Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

ACKNOWLEGEMENTS

Many thanks to fellow Parallaxians Jen Jacobs for cover and title page art and Chris Savage for technical review of
this edition.

Table of Contents - Page i

Table of Contents

o =T = T ol iii
U a T = [(= SR iii
Getting the Most from StampPWOrKS..........ueviiiiiie e \Y
S =T 01 (o TS o o7 USSR %

Preparing the StampWorks Labccccummiiimmmmsimmmesssinmmessnmessnssssnaas 1
StampWorks Kit CONtENES........ooieiiiiiiice e 1
Setting Up the Hardware and Software ... 2
Notes on Using Integrated Circuits in StampWorks Experiments..........ccccccceeeeeviivnnennn. 9

Programming Essentials.........ccccciimmmmmnimmmmmssinmmmssiinmmssssin s ssssnnssssssnnes 11
Contents of @ WOrking Programcoooiiiiiiiii e ssiieeee e e e 11
Branching — Redirecting Program FIOWcoooiiiiiiiiiieee e 12
Looping — Running Code Again and AQain..........c.uuuviiieeieiiiiiiiiee e essiieeee e e 14
Subroutines — Reusable Code that Saves Program Space..........ccccceeviiieeeniiieeeciennn. 16

The Elements of PBASIC Style.......cccuimmmmmmmimmsmmnsmmssmsssmsssssssssssssssssssssssnsses 19

Time to EXperiment . .c.ciciirmesimmssmmsssmmssssmssssmmssssmssssmssssmnssssnssssnnsssnnssssnnsssnnns 25
Learn the Programming CONCEPESccocuiiiiiiiiiiie ittt 25
101 o T oo TR g T o o] 1Yo £ PSR 25
What to do Between Projects ... 25
Experiment #1: FIash @n LEDcoooiiiiiiiiiee et 26
Experiment #2: Flash an LED (AdVaNCed)coocuiiiiiiiiiieniieciee e 29
Experiment #3: Display a Counter With LEDScoooviiiiiiiiiiiieeee e 33
Experiment #4: Science Fiction LED DisSplayc.cccoiiiriiiiiiieeiiee e 36
Experiment #5: LED Graph (Dot Or Bar)cooooiiiiiiiie e 40
Experiment #6: A SIMPIE GaMEooiiiiiiie e 46
Experiment #7: A Lighting Controller ... 51

Building Circuits on YOUr OWN.......cuueeeummmsmssssmmssssssmmssssssinsssssssnsssssssnssssssnnns 57

Using 7-Segment LED DiSplays ...c.iccurmmmmsmmmsmmmsmmsssmsssssssssssssssssssssssasssssssnsses 99
Experiment #8: A Single-Digit COUNEoii i 60
Experiment #9: A Digital Di€coouiiiiiiiiiieie e 63
Experiment #10: A Digital ClOCKcoo e 67

Using Character LCDSiueeeuummssssssmmnnssssmmsssssssmmnssssssnnssssssnsnsssssnnnsssssnnnssssnnns 73
Experiment #11: Basic LCD Demonstrationccceveeeiviiiiiiiiiee e 75
Experiment #12: Creating Custom LCD Characters...........ccccceevoviiiiiiiniiiniiceec e 82

Experiment #13: Reading the LCD RAMcooiiiiiiiiee e 88

Page ii -StampWorks

Moving Forward
Experiment #14:
Experiment #15:
Experiment #16:
Experiment #17:
Experiment #18:
Experiment #19:
Experiment #20:
Experiment #21:
Experiment #22:
Experiment #23:
Experiment #24:
Experiment #25:
Experiment #26:
Experiment #27:
Experiment #28:
Experiment #29:
Experiment #30:
Experiment #31:
Experiment #32:
Experiment #33:
Experiment #34:
Experiment #35:

... 93
Scanning and Debouncing Multiple INputsccccceevienicinieennen, 94
Counting EVENES ...t 98
Frequency Measurementcoceeiiiiieiiiiie e 101
Advanced Frequency Measurementccooccvviiieeeeeeeiiciiieeneeeennn 106
A Light Controlled Theremin..........c.ceoioieiiieeniiene e 109
Sound Effects (SFX)...ooi e 112
Infrared Object DetecCtioncccooviiiiiiiiiie e 119
Analog Input with PULSIN ... 123
Analog Output With PWM ... 126
Expanded Digital Outputs with Shift Registers...........ccccccooeiieiee. 130
Expanded Digital Inputs with Shift Registers...........ccccccceeviiinineenn. 137
Mixed 10 with Shift Registersccooooiiiiiiiii e 143
HObDbY Servo Controloooiiiiiiieie e 146
Stepper Motor Control 150
Voltage MeasuremMentooovviiiiiiiiiiiiieee e 156
Temperature Measurement.............oeoeieiiiiiiiiiiiieee e 161
High Resolution Temperature Measurementccccccoevviiivinenn. 168
Advanced 7-Segment Multiplexingcooooeiiiiiieiiee e 173
[2C COMMUNICALIONSeeeiiiiiiei e 179
Using a Real-Time CloCK.........cooiiiiieeiie e 188
Serial Communications with @a PCccccoiiiiiiiee 197
(BONUS) BS2PX ADCeeiieeeiiiee et seee e e e 206

Power PBASIC.....cccccossmmmmmsssnmmssssssmnssssssnnsssssnsssssssnsssssssnnssssssnnsnssssnnnsssnnnnnns 211
Striking Out 0N YOUr OWN ..iecuuimreeummsessmssssmsssssnssssmssssssssssnsssssnssssnnsssnnsssnnnsss 219

Preface - Page iii

Preface

AUTHOR'’S NOTE

Dear friends,

It seems like ages ago that Ken Gracey handed me a new prototyping and
development board and asked, “What do you think we could do with this?” That
board, of course, was the original NX-1000 and what we went on to create together
was the first edition of the book you're now reading: StampWorks.

A lot of things have changed since then, and yet many things remain comfortably
constant: there are still many ways to learn microcontroller programming and one of
the best — in our opinion — is to do so using the BASIC Stamp® microcontroller. Our
philosophy has always been rooted in the belief that learning by doing provides the
fastest, deepest, most satisfying results. We teach theory by putting it into practice.
That's what StampWorks is all about.

Most of you that find your way to StampWorks will have had some applicable
experience; perhaps you've worked your way through our excellent Stamps in Class
student guides and are looking to build on that experience. Perhaps you have an
electronics and/or programming background and are looking to apply those skills
with the BASIC Stamp microcontroller. Either way, this book will teach you to apply
the skills that you have and develop new ones along the way so that you can
confidently translate your ideas into working projects. Microcontrollers are a part of
our daily lives — whether we see them or not — so learning to design with and
program them is a very valuable skill.

Like earlier editions, this book assumes that you're ready to work — ready to read
component documentation, willing to open the BASIC Stamp IDE help file for details
on a PBASIC command, that you're unafraid to do a web search if necessary to
obtain data that will be required for a challenge; in short, whatever it takes to
succeed. We'll push a bit harder this time, but we’ll do it together. My goal is that
even if this isn't your first exposure to StampWorks, it will be a worthwhile and
pleasurable experience.

Page iv -StampWorks

Among the changes that affect this edition of StampWorks is an updated PBASIC
language: PBASIC 2.5. For those that come from a PC programming background,
PBASIC 2.5 will make the transition to embedded programming a bit easier to deal
with. And what I'm especially excited about is a new development platform: the
Parallax Professional Development Board. My colleague, John Barrowman, with
feedback from customers and Parallax staff alike, put about all of the features we
would ever want into one beautiful product. For those of you have an NX-1000 (any
of the variants), don’'t worry; most of the experiments will run on it without major
modification.

Finally, as far as the text goes, many of the project updates are a direct result of
those that have come before you, and you, my friend, have the opportunity to affect
future updates. Please, if you ever have a question, comment, or suggestion, feel
free to e-mail them to Editor@parallax.com.

Preface - Page v

GETTING THE MOST FROM STAMPWORKS

Before you get started, you'll want to have a copy of the BAS/C Stamp Syntax and
Reference Manual (version 2.1 or higher) handy — either printed or in PDF (available
as a free download from www.parallax.com). Through the course of this book I will
ask you to review specific sections of the BAS/IC Stamp Manual in preparation for an
experiment. At other times | may ask you to go to the Internet to download a
datasheet; by doing this we can focus on the details of the experiment and not have
to print a lot of redundant information.

STEPS TO SUCCESS

Read (or review if you have previous BASIC Stamp programming experience)
sections 1 — 4 of the BAS/IC Stamp Syntax and Reference Manual. This will introduce
you to the BASIC Stamp microcontroller, its programming IDE, and its memory
organization. And if you've never worked with microcontrollers or programming of
any kind, I strongly suggest that you download and work your way through our
What's A Microcontroller? student guide. This outstanding resource is used in
schools all over the world and is considered the best introduction to microcontroller
principals and programming available anywhere.

The focus of StampWorks is on embedded programming and circuit integration.
That said, this is not a text on electronics principles. If you are new to the world of
electronics, a great beginning text is Getting Started in Electronics by renowned
electronics author, Forrest M. Mims. You can find this at your favorite bookseller.

Read “Preparing the StampWorks Lab” in the next section. This will introduce you to
the Parallax Professional Development Board (PDB) and get it ready for the
experiments that follow.

Finally, work your way through the experiments, referring to the BAS/IC Stamp
Syntax and Reference Manual (or online Help file) as needed. This is the fun part —
and the part that is the most work. Don't allow yourself to be satisfied with simply
loading and running the code — dig in and work with it, modify it, make it your own.

By the time you've completed the experiments in this book | believe you will be
ready and will have the confidence to take on your own BASIC Stamp microcontroller
projects; from projects that may be very simple to those that are moderately
complex. The real key is to make sure you truly understand an experiment before

Page vi -StampWorks

moving on to another. Oftentimes we will rely on what we've previously worked
through as support for a new experiment. Taken one at a time, the experiments are
not difficult and if you work through them methodically, you'll find your confidence
and abilities increasing at a very rapid pace.

Preparing the StampWorks Lab - Page 1

Preparing the StampWorks Lab
STAMPWORKS KIT CONTENTS

Before getting to the experiments, let's start by taking inventory of the kit and then
preparing the PDB for use in the experiments that follow. Once this is done, you'll be
able to move through the experiments smoothly, and when you've completed
StampWorks you'll be ready for just about any project you can imagine.

StampWorks Lab Kit Contents #27297
(parts and quantities subject to change without notice)
Stock Code # Description Marking Qty
27218 BASIC Stamp Syntax and Reference Manual 1
27220 StampWorks Manual v2.1 1
23138 Professional Development Board 1
BS2-1C BASIC Stamp 2 module 1
750-00007 Power supply, 12 vdc, 1 amp 1
800-00003 Serial cable 1
805-00006 USB cable, Mini-A to Mini-B 1
700-00050 22-gauge wire, solid, red 1
700-00051 22-gauge wire, solid, white 1
700-00052 22-gauge wire, solid, black 1
200-01030 0.01 pF capacitor 103 2
200-01040 0.1 pF capacitor 104 2
150-02210 220 ohm resistor Red-Red-Brn 3
150-04710 470 ohm resistor Yel-Vio-Brn 3
150-01020 1 k-ohm resistor Brn-Blk-Red 3
150-04720 4.7 k-ohm resistor Yel-Vio-Red 3
150-01030 10 k-ohm resistor Brn-Blk-Org 3
350-00009 CdS photoresistor 2
350-00003 IR LED 1
350-90000 LED stand-off (for IR LED) 1
350-90001 LED shield (for IR LED) 1
350-00014 IR receiver 1
603-00006 Parallel LCD module 1
604-00009 LM555 timer 1
602-00015 LM358 dual op-amp 1
602-00009 74HC595, serial-in-parallel-out shift register 2
602-00010 74HC165, parallel-in-serial-out shift register 2
ADC0831 ADCO0831, 8-bit A/D converter 1
604-00002 DS1620, digital thermometer 1
603-00014 MC14489 LED multiplexer 1
604-00020 24L.C32 EEPROM 1
900-00005 Servo, Parallax Standard 1
27964 Stepper motor, 12 vdc, unipolar 1

Page 2 - StampWorks

SETTING UP THE HARDWARE AND SOFTWARE

To set up the StampWorks lab for experiments, you'll need the following items:

Professional Development Board

BASIC Stamp 2 module

12-volt wall pack (2.1 mm, center-positive plug)
Programming cable (serial or USB)

Red and black hook-up wire (22-gauge, solid)

Wire cutters/strippers (not included in the StampWorks Kit)

Installing the BASIC Stamp Module

Start by removing the BASIC Stamp 2 module from its protective foam and carefully
inserting it into the 40-pin DIP socket on the PDB (upper-left, near the DB-9
programming connector). You'll notice that the BASIC Stamp 2 module and the PDB
socket are marked with semi-circle alignment guides. The BASIC Stamp 2 module
should be inserted into the socket so that the alignment guides match. Ensure that
the BASIC Stamp 2 module is fully left-aligned in the socket as shown in the
illustration below.

DOOOOOOC
X} +BS-1

=
a
o
<

DOOOOOOOC

Make the Programming Connection

Use a programming cable (either serial or USB, but not both at the same time) to
connect the PDB to your PC. It is best to select a serial (COM) port that is not already
in use. If, however, you're forced to unplug another device, for example, a PDA or
electronic organizer from your computer, make sure that you also disable its
communication software before attempting to program your BASIC Stamp
microcontroller.

Preparing the StampWorks Lab - Page 3

Note: For USB programming, make sure that you have the latest FDTI VCP (Virtual Com
Port) driver. Step-by-step installation instructions of the VCP driver may be obtained via
the StampWorks Product Page http at www.parallax.com.

Computer System Requirements

You will need either a desktop or laptop PC to run the BASIC Stamp Editor software.
For the best experience with the StampWorks experiments, check that you computer
system meets the following requirements:

e Microsoft Windows® 2000/XP or newer operating system
e An available serial or USB port (with VCP driver installed)
e World Wide Web access

Note: While third-party developers have made BASIC Stamp editors available for
operating systems other than Windows, these editors are not supported by Parallax. This
text assumes that you're running the official Parallax BASIC Stamp Editor on a Windows
computer. If you're using another operating system and editor, you may need to make
adjustments in editor-specific instructions.

Installing the BASIC Stamp Editor

Download the latest version of the BASIC Stamp Editor for Windows (version 2.1 or
later) from www.parallax.com. Run the program installer, following the on-screen
prompts.

Download the StampWorks Program Files

The sample programs listed in this book, with the exception of Experiment 35, were
written for the BASIC Stamp 2. These programs and some additional bonus programs
are available for free download from www.parallax.com. Many of them contain
additional code to support conditional compliation with different BASIC Stamp
models.

Page 4 - StampWorks

Preparing the Breadboard

In the center of the PDB is a solderless breadboard where we will build circuits that
are not integral to the PDB lab board itself (a variety of components are included in
the StampWorks kit). It's important to understand how this breadboard works. With
a little bit of preparation, it will be even easier to use with the experiments that
follow.

The innermost portion of the breadboard is where we will connect the components.
This section of the breadboard consists of several columns of sockets (there are
numbers printed along the top for reference). For each column there are two sets of
rows. The rows are labeled A through E and F through J, respectively. For any
column, sockets A through E are electrically connected. The same holds true for
rows F through J.

Above and below the main section of breadboard are two horizontal rows of sockets,
each divided in the center. These horizontal rows (often called “rails” or “buses™) will
be used to carry +5 volts (Vdd) and Ground (Vss). The preparation of the
breadboard involves connecting the rails so that they run from end-to-end,
connecting the top and bottom rails together and, finally, connecting the rails to the
Vdd and Vss connections of the PDB power supply. Here’'s what the breadboard
looks like on the outside:

EEEEE HEOEEE CEHEOOE OEEEE EEREEE EEEEE HEEEE DEOOEE OEHEOEE EREEE
EE0E HOEHEE COOOE0 OEOEEE EEEEE EE0EE HOEHEE ODOOOOE OOOGE EOEEE

7 5 10 75 20 25 30 35 70 15 50 55 50
AREEEEEEEEEEFNEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEOEEEEEEEOEEREEREEEEE A
BEEEEEEEEEEEEREEEEEFAEEEEEREEEEEEEEEEEEEEERAEFREEEEEEEEEEEEEEEEEEEEAREEE B
CEEFEEEEEEEEEEEEFIEEREEEEEEEOEEEEEEEEEENEEEEENEEEEIEOREEEEEEEOEEREEREEEERE C
DEEFEEEEEEFEFEEEEEEEEEEEEEEEOEEREEAEEEEEEEEEEEEEEEEOEEOEEEEEEEEEEEEEEEE D
ErfERENEEEEIEEEEEREEEEEEEEEEOEEEEIEEEEEEEEEEREEEAEEENEOEEEEREEEEREEREEREEE E
FEEEEEEEEEEEEEEEEEEEEOEEEEEOEAEEEEEEREEEEEEEEEEEEEEREEEEEEEEEEEEEEEE F
GEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEFNEEEEENEEEEEOEEEEEEENEEREEREEEERE G
HEEOEEEEEEEEEEEEEEEE H
| FEEEEFNEEEENEREEEEEEOEEFEEEENEEEEEEEEEREEEEEEEEEEEOEENEEEEEEEEEEREEE |
JEEEEEEEEEEEEEEEEEEEEOEEEEEEAEEAEEEEEEEEEEEEEEEEEEEOEEERAEEEEEEREEEEEE J
1 5 10 15 20 25 30 35 40 45 50 55 60

EEEEE HEOEEE CEHEOOE OEEEE EEREEE EEEEE HEEEE DEOOEE OEHEOEE EREEE
EEEEE HOEEE CEHEOOE OEEEE EEEEE EEEEE HOEEE DEOOEE OHEOGE EREEE

Preparing the StampWorks Lab - Page 5

If the breadboard was X-Rayed, we would see the internal connections and the
breaks in the Vdd and Vss rails that need to be connected. Here's a view of the
breadboard’s internal connections:

Start by setting your wire stripper for 22 gauge (0.34 mm?). Take the spool of black
wire and strip a ¥a-inch (6 mm) length of insulation from the end of the wire. With
your needle-nose pliers, carefully bend the bare wire 90 degrees so that it looks like
this:

0.25"
6mm

Now push the bare wire into the topmost (ground) rail, into the socket that is just
above breadboard column 29 (this socket is just left of the middle of the breadboard,
near the top). Hold the wire so that it extends to the right. Mark the insulation by
lightly pinching it with the wire cutters at the socket above column 32. Be careful
not to cut the wire.

Remove the wire from the breadboard and cut it about ¥-inch (6 mm) beyond the
mark you just made. With your wire strippers, remove the insulation at the mark.
Now bend the second bare end 90 degrees so that the wire forms a squared “U”
shape with the insulation in the middle.

Page 6 - StampWorks

If you've measured and cut carefully, this “U” shaped wire will plug comfortably into
the ground rail at sockets 29 and 32. This will create a single ground rail. Repeat
this process with black wire for the bottom-most rail. Then, connect the two rails
together using the same process at column 60 (right-most sockets on each rail).

With the red wire, connect the top and bottom inside rail halves together. These rails
will carry +5 volts, or Vdd. Connect the Vdd rails together at column 59.

Now take a 1%%-inch (4 cm) section of black wire and a 1%2-inch (4 cm) section of
red wire and strip ¥-inch (6 mm) insulation from the ends of both. Bend each wire
into a rounded “U” shape. These wires are not designed to lie flat like the other
connections, making them easy to remove from the StampWorks lab board if
necessary.

Carefully plug one end of the red wire into any of the terminal sockets of the VDD
block (near pin 1 of the BASIC Stamp socket) and the other end into the Vdd (+5)
rail at column 5. Then, plug one end of the black wire into any of the sockets of the
VSS block and other end into the ground rail at column 1. Be very careful with these
last two connections. If the Vdd and Vss rails get connected together damage may
occur when power is applied to the PDB. When completed, the PDB breadboard will
look like this:

Preparing the StampWorks Lab - Page 7

VSS VDD
e

&EEE¥ EEEEE EEHEEE HEEEE OEOEEE——-EEEE CEEEE DOEEE OEEEE EEEER

EEEEDY HEHOEOE CEEEE EEHEEE CEHEEEe-SEEHEE CEOEEE ODEEEE EEEEE EEEGN
H g

5 0 15 20 75 30 35 70 75 50 55 &b
ANEEEEEENEEIENEENEEEEEENENEEEEEEEEENENEEEREEEEEEREEEEEEEEEEEEER|am A
BEEEEEEEEEEEENEEER|fEE B
CEHEEEEEIEIEIENEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEEEEEEREEEEEEEEEREEEEJeE C
DEIEEEEEEOEEEEEOENEEEEEEEEEEEEEEEEEEEEEEEOEEEEEEEEEEEEEEEEEEEEEERA|fEE D
EEEEEEEEEEEEEEEEEAEEEEEAEEEEEAEEEEEAEEEEEAEEEEEEAEEEEAEEEEEEEEEEERJ|EE E

FOEEERRREJEE F
CEEEIEEEEEEEEEHEERRREIeE G
HEEREEEEEERfeE H
| IEEEREEEEEEEREEa|fam |
JEEEEEEEEEEEEOEEEEEEEEEAEEEEEEEEEEEEEEEHEEEEEEEEEAEEEEEEEEEEEEEIleE J
1 5 10 15 20 25 30 35 40 45 50 55 €
GEEﬂ:EEES

fIDEE DEEEE OEEEE EEEEE EEHEOM0E--SFEEE OEEEHED EEEDEE EEEEE EE0E
IIDEE DEEEE EEEEE EEEEE QEHEOCEESEEEDED QEEEE EEEHEE DEHEOEE BEEE

Final Checkout

With the BASIC Stamp module installed and the breadboard prepared it is time for a
final checkout before proceeding to the experiments. If you haven't done so already,
connect a programming cable (serial or USB) between your PC and the PDB.
Connect a 12-volt DC power supply to the PDB power connector. Move the PDB
power switch to ON; a blue LED next to the power switch should illuminate. If it
doesn’t, move the power switch to OFF and recheck all connections, as well as the
power supply.

Start the BASIC Stamp Editor and enter the following short program:

' {$sTAMP BS2}

Main:
DEBUG "Ready for StampWorks 2.1!"
END

Page 8 - StampWorks

Now run the program. If all went well the program will be downloaded to the BASIC
Stamp module and a Debug Terminal window will appear.

If an error occurs, check the following items:

Is the BASIC Stamp module plugged into the PDB correctly?

Is the PDB power switch set to ON? Is the blue ON LED lit?

Is the programming cable connected between the PC and the PDB?
Have you (manually) selected the wrong PC com port?

Is the PC com port being used by another program?

If using USB, have you installed the FTDI VCP driver?

When the Debug Terminal window appears and tells you that the StampWorks lab is
ready, it's time to talk about BASIC Stamp programming.

Preparing the StampWorks Lab - Page 9

NOTES ON USING INTEGRATED CIRCUITS IN STAMPWORKS
EXPERIMENTS

There are two ways to draw integrated circuits (ICs) in a schematic: One way is
considered “chip-centric” in which 1/0 pins appear in the schematic according to their
physical location on the device. StampWorks uses schematics drawn for efficiency,
meaning that 1/0 pins are placed to make the schematic legible. 1/0 pins on all
chips are counted according to their indicator, starting with Pin 1 and counting in a
counter-clockwise direction as shown below:

Indicator denotes
top of device.

v

q - P
B 7]
B]
B]

Page 10 - StampWorks

Programming Essentials - Page 11

Programming Essentials

CONTENTS OF A WORKING PROGRAM

In Sections 1 - 4 of the BASIC Stamp Syntax and Reference Manual you were
introduced to the BASIC Stamp, its architecture, and the concepts of variables and
constants. In this section, we’ll introduce the various elements of a program: linear
code, branching, loops, and subroutines.

The examples in this discussion use pseudo-code to demonstrate and describe
program structure. Italics are used to indicate the sections of pseudo-code that
require replacement with valid programming statements in order to allow the
example to compile and run correctly. You need not enter any of the examples here
as all of these concepts will be used in the experiments that follow.

People often think of computers and microcontrollers as “smart” devices and yet,
they will do nothing without a specific set of instructions. This set of instructions is
called a program, and it is our job to write it. Programs for the BASIC Stamp are
written in a language called PBASIC, a Parallax-specific version of the BASIC
(Beginner’s All-purpose Symbolic Instruction Code) programming language. BASIC is
very popular because of its simplicity and English-like syntax. Since its creation at
Dartmouth College in the mid 1960's it has become one of the dominant
programming languages available for platforms as small as the BASIC Stamp
microcontroller, and as large as mainframe computer systems.

A working program can be as simple as a list of statements. Like this:

statement 1
statement 2
statement 3
END

This is a very simple, yet valid program structure. What you'll find, however, is that
most programs do not run in a straight, linear fashion like the listing above. Program
flow is often redirected with branching, looping, and subroutines, with short linear
sections in between. The requirements for program flow are determined by the goal
of the program and the conditions under which the program is running.

Page 12 - StampWorks

BRANCHING — REDIRECTING PROGRAM FLOW

A branching instruction is one that causes the flow of the program to change from its
linear path. In other words, when the program encounters a branching instruction, it
will, in almost all cases, not be running the next [linear] line of code. The program
will usually go somewhere else, often creating a program loop. There are two
categories of branching instructions: wnconditional and conditional. PBASIC has two
instructions, GOTO and GOSUB that cause unconditional branching.

Here's an example of an unconditional branch using GoTo:

Label:
statement 1
statement 2
statement 3
GOTO Label

We call this an unconditional branch because it always happens. GoTo redirects the
program to another location. The location is specified as part of the GoTO instruction
and is called an address. Remember that addresses start a line of code and are
followed by a colon (:). You'll frequently see GoTo at the end of the main body of
code, forcing the program statements to run again.

Conditional branching will cause the program flow to change under a specific set of
circumstances. The simplest conditional branching is done with an IF-THEN
construct. PBASIC includes two distinct versions of IF-THEN; the first is used
specifically to redirect program flow to another point based on a tested condition.

Take a look at this listing:

Start:
statement 1
statement 2
statement 3
IF (condition) THEN Start

In this example, statements 1- 3 will run at least once and then continue to run as
long as the condition evaluates as True. When required, the condition can be tested
prior to the code statements:

Programming Essentials - Page 13

Start:

IF (condition) THEN
statement 1
statement 2
statement 3

ENDIF

Note that the code statements are nested in an IF-THEN-ENDIF structure which

does not require a branch label. If the condition evaluates as False, the program will
continue at the line that follows ENDIF. Another use of this conditional structure is

to add the ELSE clause:

Start:

IF (condition) THEN
statement 1
statement 2
statement 3

ELSE
statement 4
statement 5
statement 6

ENDIF

If the condition evaluates as True then statements 1 — 3 will run, otherwise
statements 4 — 6 will run.

As your requirements become more sophisticated, you'll find that you'll want your
program to branch to any number of locations based on the value of a control
variable. One approach is to use multiple IF-THEN constructs.

IF (index = 0) THEN Label 0
IF (index 1) THEN Label 1
IF (index = 2) THEN Label 2

This approach is valid and does get used. Thankfully, PBASIC has a special command
called BRANCH that allows a program to jump to any number of addresses based on
the value of an index variable. BRANCH is a little more complicated in its setup, but
very powerful in that it can replace multiple IF-THEN statements. BRANCH requires
a control (index) variable and a list of addresses

The previous listing can be replaced with one line of code:

BRANCH index, [Label 0, Label 1, Label 2]

Page 14 - StampWorks

When index is zero, the program will branch to Label 0, when index is one the
program will branch to Label 1 and so on.

Related to BRANCH is ON-GOTO, in fact, it can serve as direct replacement:

ON index GOTO Label_0, Label_1, Label_2

Programmers coming from a PC background are probably more familiar with ON-
GOTO, hence its inclusion in PBASIC 2.5.

LOOPING — RUNNING CODE AGAIN AND AGAIN

As demonstrated in the previous section, program loops can be created with
conditional and unconditional branching instructions. Modern variants of BASIC,
including PBASIC 2.5, simplify looping with the DOo-LOOP structure. With DO-LOOP
the branching label is no longer required. Here's how DO-LOOP is used to force
unconditionallooping of number of code statements:

DO
statement 1
statement 2
statement 3
LOOP

As in the previous example, statements 1 - 3 will run in order, continuously.

The DO-LOOP construct can be made conditional by testing before or after the loop
statements:

DO WHILE (condition)
statement 1
statement 2
statement 3

LOOP

In this example the loop statements will only run if and while the condition evaluates

as True.
DO
statement 1
statement 2
statement 3
LOOP WHILE (condition)

Programming Essentials - Page 15

In the second example, the loop statements will run at least once, even if the
condition evaluates as False. As you can see, the strength of DO-LOOP is that it

simplifies how and where the condition testing occurs.

DO-LOOP adds another type of testing with UNTIL.

DO
statement 1
statement 2
statement 3

LOOP UNTIL (condition)

DO UNTIL (condition)
statement 1
statement 2
statement 3

LOOP

By using UNTIL, the loop statements will run while the condition evaluates as False.
And, as demonstrated earlier, placing the test at the end of the loop will cause the
loop statements to run at least one time.

Another example of looping is the programmed loop using FOR-NEXT.

FOR controlVar = startVal TO endvVal STEP stepSize
statement 1
statement 2
statement 3

NEXT

The FOR-NEXT construct is used to run a section of code a specific number of times.
FOR-NEXT uses a control variable to determine the number of loop iterations. The
size of the variable will determine the upper limit of loop iterations. For example, the
upper limit when using a byte-sized control variable would be 255. In the example
below, controlvar could be defined as a Nib (4-bit) variable as the end value is
less than 16:

FOR controlVar = 1 TO 10
statement 1
statement 2
statement 3

NEXT

Page 16 - StampWorks

The STEP option of FOR-NEXT is used when the loop needs to count in increments
other than one. If, for example, the loop needed to count even numbers, the code
would look something like this:

FOR counter 2 TO 20 STEP 2

statement

sStatement

Statement
NEXT

SUBROUTINES — REUSABLE CODE THAT SAVES PROGRAM SPACE

The final programming concept we’ll discuss is the subroutine. A subroutine is a
section of code that can be called from anywhere in the program. GOSUB is used to
redirect the program to the subroutine code. The subroutine is terminated with the
RETURN instruction. RETURN causes the program to jump back to the line of code
that follows the calling GOSUB.

W N R

Start:
DO
GOSUB My Sub
PAUSE 1000
LOOP

My Sub:
statement 1
statement 2
statement 3
RETURN

In this example, the code in the My Sub subroutine is executed and then the
program jumps back to the line PAUSE 1000.

Advanced programmers will take advantage of subroutines and the ON-GOSUB
instruction. ON-GOSUB works like ON-GOTO, except that the program returns to the
line that follows ON-GOSUB. This technique is very useful for creating fask manager
program structures as shown next:

Main:
DO
GOSUB Critical_Task
ON task GOSUB Task 1, Task 2, Task 3
task = task + 1 // 3
LOOP

Programming Essentials - Page 17

Critical_ Task:
statement (s)
RETURN

Task 1:
statement (s)
RETURN

Task 2:
statement (s)
RETURN

Task 3:
statement (s)
RETURN

With this type of program the code section at Critical Task is interleaved
between the other tasks. And by placing all task code into discrete subroutines, they
can be called from any point in the program. This allows one task to test for a

condition and call another subroutine if required, or to set the next task by modifying
the task pointer.

Page 18 - StampWorks

The Elements of PBASIC Style - Page 19

The Elements of PBASIC Style

Like most versions of the BASIC programming language, PBASIC is very forgiving
and the compiler enforces no particular formatting style. So long as the source code
is syntactically correct, it will compile and download to the BASIC Stamp without
trouble.

Why, then, would one suggest a specific style for PBASIC? With millions of BASIC
Stamp microcontrollers sold, and tens of thousands of active users world-wide, it is
very likely that you'll be sharing your PBASIC code with someone, if not co-
developing a BASIC Stamp-based project. Writing code in an organized, predictable
manner will save you — and your potential colleagues — time; in analysis, in
troubleshooting, and especially when you return to a project after a long break.

The style guidelines presented here are just that: guidelines. They have been
developed from style guidelines used by professional programmers using other high-
level languages such as Java®, C/C++ and Visual Basic®. Use these guidelines as is,
or modify them to suit your needs. The key is selecting a style that works well for
you or your organization and sticking to it.

1. Do It Right the First Time

Many programmers, especially new ones, fall into the "/ knock it out now and fix it
/ater.” trap. Invariably, the "fix it later" part never happens and sloppy code makes
its way into production projects. If you don't have time to do it right, when will you
find time to do it again?

Start clean and you'll be less likely to introduce errors in your code. And if errors do
pop up, clean and organized formatting will make them easier to find and fix.

2. Be Organized and Consistent

Using a blank program template will help you organize your programs and establish a
consistent presentation. The BASIC Stamp Editor allows you to specify a file
template for the File | New function (see Edit | Preferences | Files & Directories...).

Page 20 - StampWorks

3. Use Meaningful Names

Be verbose when naming constants, variables, and program labels. The compiler will
allow names up to 32 characters long. Using meaningful names will reduce the
number of comments and make your programs easier to read, debug and maintain.

4. Naming I/0 Pins

BASIC Stamp 1/0 pins are a special case as various elements of the PBASIC language
require a pin to be a constant value, an input variable or an output variable. Begin
1/0 pin names with an uppercase letter and use mixed case, using uppercase letters
at the beginning of new words within the name. When using the BS2, the PIN
definition is used. This will cause the compiler to use the correct variant (constant
value, input bit, or output bit) for the pin.

HeaterCtrl PIN 15

Since connections don't change during the program run, I/0 pins are named like
constants (#5) using mixed case, beginning with an uppercase letter.

5. Naming Constants

Begin constant names with an uppercase letter and use mixed case, using uppercase
letters at the beginning of new words within the name.

AlarmCode CON 25

6. Naming Variables

Begin variable names with a lowercase letter and use mixed case, using uppercase
letters at the beginning of new words within the name. Avoid the use of internal
variable names (such as BO or Wl1) in your programs. Allow the compiler to
automatically assign RAM space by declaring a variable of specific type.

waterLevel VAR Word

The Elements of PBASIC Style - Page 21

7. Variable Type Definitions

Conserve BASIC Stamp user RAM by declaring the variable type required to hold the
expected values of the variable.

bitvalue VAR Bit o0 -1
nibvalue VAR Nib ''0 - 15
bytevalue VAR Byte ' 0 - 255
wordValue VAR Word ' 0 - 65535

8. Program Labels

Begin program labels with an uppercase letter, use mixed case, separate words
within the label with an underscore character and begin new words with a number or
uppercase letter. Labels should be preceded by at least one blank line, begin in
column 1 and must be terminated with a colon (except after GoTo and THEN where
they appear at the end of the line and without a colon).
Print ZString:
DO

READ eeAddr, char

eeAddr = eeAddr + 1

IF (char = 0) THEN EXIT

DEBUG char

LOOP
RETURN

9. PBASIC Keywords

All PBASIC language keywords, including SYMBOL, CON, VAR, PIN and
serial/debugging format modifiers (DEC, HEX, BIN) and control characters (CR, LF)
should be uppercase. The BASIC Stamp editor will correctly format PBASIC
keywords automatically, and allow you to set color highlighting by category to suit
your personal tastes.

Main:

DEBUG "BASIC Stamp", CR
END

Page 22 - StampWorks

10. Indent Nested Code

Nesting blocks of code improves readability and helps reduce the introduction of
errors. Indenting each level with two spaces is recommended to make the code
readable without taking up too much space.

Main:
DO
FOR testLoop = 1 TO 10
IF (checkLevel < threshold) THEN

lowLevel = lowLevel + 1
LedOkay = IsOff
ELSE
LedOkay = IsOn
ENDIF
PAUSE 100
NEXT

LOOP WHILE (testMode = Yes)

Note: The dots are used to illustrate the level of nesting and are not a part of the code.

11. Condition Statements

Enclose condition statements in parenthesis for clarity.

Check_Temp:
IF (indoorTemp >= setPoint) THEN
AcCtrl = IsOn
ELSE
lowLevel = lowLevel + 1
ENDIF

Fill Water Tank:
DO WHILE (waterLevel = IsLow)
TankFill = IsOn
PAUSE 250
LOOP
Get_Delay:
DO
DEBUG HOME, "Enter time (5 - 30)... ", CLREOL
DEBUGIN DEC2 tmDelay
LOOP UNTIL ((tmDelay >= 5) AND (tmDelay =< 30))

The Elements of PBASIC Style - Page 23

12. Be Generous With White Space

White space (spaces and blank lines) has no effect on compiler or BASIC Stamp
performance, so be generous with it to make listings easier to read. As suggested in
#8 above, allow at least one blank line before program labels (two blanks lines
before a subroutine label is recommended). Separate items in a parameter list with
a space.

Main:
DO
ON task GOSUB Update Motors, Scan IR, Close Gripper
LOOP

Update Motors:
PULSOUT leftMotor, leftSpeed
PULSOUT rightMotor, rightSpeed
PAUSE 20
task = (task + 1) // NumTasks
RETURN

An exception to this guideline is with the Bits parameter used with SHIFTIN and
SHIFTOUT, the REP modifier for DEBUG and SEROUT, and the byte count and
terminating byte value for SERIN. In these cases, format without additional white
space.

SHIFTIN A2Ddata, A2Dclock, MSBPOST, [result\9]
DEBUG REP "#*"\25, CR

SERIN IRbSIO, IRbBaud, [buffer\8\255]

13. Use Conditional Compilation for Compatibility

Some commands such as SERIN and SEROUT use different parameters based on the
target BASIC Stamp. Use conditional compilation for maximum compatibility of your
programs.

#SELECT S$STAMP
#CASE BS2, BS2E, BS2PE

T1200 CON 813

T2400 CON 396

T9600 CON 84
#CASE BS2SX, BS2P

T1200 CON 2063

T2400 CON 1021

Page 24 - StampWorks

T9600 CON 240
#CASE BS2PX
T1200 CON 3313
T2400 CON 1646
T9600 CON 396
H#ENDSELECT

The StampWorks files (available for download from www.parallax.com) include a
blank programming template (Template.BS2) that will help you get started writing
organized code. It's up to you to follow the rest of the guidelines above — or develop
and use guidelines of your own.

Time to Experiment - Page 25

Time to Experiment

LEARN THE PROGRAMMING CONCEPTS

What follows is a series of programming experiments that you can build and run with
your StampWorks lab. The purpose of these experiments is to teach programming
concepts and the use of external components with the BASIC Stamp. The
experiments are focused and designed so that as you gain experience, you can
combine the individual concepts to produce sophisticated programs.

BUILDING THE PROJECTS

This section of the manual is simple but important because you will learn important
programming lessons and construction techniques using your StampWorks lab. As
you move through the rest of the manual, construction details will not be included
(you'll be experienced by then and can make your own choices) and the discussion
of the program will be less verbose, focusing specifically on special techniques or
external devices connected to the BASIC Stamp.

WHAT TO DO BETWEEN PROJECTS

The circuit from one project may not be electrically compatible with another and
could, in some cases, cause damage to the BASIC Stamp if the old program is run
with the new circuit. For this reason, a blank program should be downloaded to the
BASIC Stamp before connecting the new circuit. This will protect the BASIC Stamp by
resetting the 1/0 lines to inputs. Here’s a simple program that will clear and reset the
BASIC Stamp.

' {$sTAMP BS2}
Main:

DEBUG "BASIC Stamp clear."
END

For convenience, save this program to a file called CLEAR.BS2.

Page 26 - StampWorks

EXPERIMENT #1: FLASH AN LED

LEDs are everywhere; virtually every piece of electronic equipment that provides
some indication to a user can or does use LEDs. The purpose of this simple
experiment is to flash an LED with the BASIC Stamp, as flashing LEDs are frequently
used as alarm and status indicators.

Look It Up: PBASIC Elements to Know

e $sTAMP (compiler directive)
e $PBASIC (compiler directive)

e PIN

e CON

e HIGH
e LOW

e PAUSE
e GOTO

Building the Circuit

All StampWorks experiments use a dashed line to indicate components that are
installed on the PDB. The LED is available on the “LEDS” section of the PDB, just to
the right of the BASIC Stamp socket.

PO

The PDB has 16 discrete LEDs built in; connect just one to the BASIC Stamp module.

1. Start with a three-inch (8 cm) segment of white hook-up wire. Strip ¥-inch
(6 mm) of insulation from each end.

2. Plug one end into BASIC Stamp connection for PO.

3. Plug the other end into LED O.

Time to Experiment - Page 27

Program: SW21-EX01-Flash_LED.BS2:

' {$sTAMP BS2}
' {$PBASIC 2.5}

' Flashes an LED connected to PO. This program will work, unmodified, on
' any BS2-family module.

AlarmLed PIN 0 ' LED on PO
I ===== [Comgitemig | ===
FlashTm CON 500 ' delay 500 milliseconds

Main:
HIGH AlarmLed ' turn the LED on
PAUSE FlashTm
LOW AlarmLed ' turn the LED off
PAUSE FlashTm
GOTO Main

Behind the Scenes

Each of the BASIC Stamp’s 1/0 pins has three bits associated with its control. A bit in
the DIRS register determines whether the pin is an input (bit = 0) or an output (bit
= 1). If the pin is configured as an output, the current state of that pin is stored in
the associated bit in the ouUTs register. If the pin is configured as an input, the
current pin value is taken from the associated bit in the INS register.

HIGH and Low actually perform two functions with one command: the selected pin
is configured as an output (1 in the DIRS register) and the state bit is modified in
the ouUTs register (1 for HIGH, O for LOW).

Page 28 - StampWorks

For example, this:
HIGH 0

... actually performs the same function as:

DIRO 1 ' make PO an output
ouUTo = 1 ' set PO high

but does it with just one line of code. Conservation of program space is an
important aspect of microcontroller programming, and when we can save code space
we should — we'll probably want or need that space later.

A very common beginner’s error is this:
OUTPUT 0
HIGH 0

There is no need to manually configure the pin as an output as this function is part of the
HIGH command. While doing this won’t harm the program, it does consume valuable code
space. There are very few occasions when INPUT and OUTPUT are required for proper
program operation, as most PBASIC commands handle setting the pin’s I/O state.

Write Code like a Pro

Note that even in this very simple program, we are following the style guidelines
detailed in “The Elements of PBASIC Style”. By using this professional style, the
program becomes somewhat self-documenting, requiring fewer comments, and it
allows the program to be modified far more easily. If, for example, we wanted to
change the LED pin assignment or the flash rate, we would only have to make small
changes to the declarations sections and not have to edit the entire listing. When
our programs grow to several hundred lines, using cleverly-named pin definitions and
constant values will save us a lot of time and frustration.

Time to Experiment - Page 29

EXPERIMENT #2: FLASH AN LED (ADVANCED)

Now that we've got things moving, let's step up a bit and explore an advanced
approach to flashing an LED. The method revealed in this experiment provides the
best in program readability and ease-of-maintenance.

Look It Up: PBASIC Elements to Know

OUTPUT
DO-LOOP

VAR

Nib (variable type)
BITO..BIT15 (variable modifier)

Building the Circuit
This experiment uses the same circuit as Experiment #1.

Program: SW21-EX02-Flash_LED-Adv.BS2:

' {$sSTAMP BS2}
' {$PBASIC 2.5}

' Flashes an LED connected to PO. This program will work, unmodified, on
' any BS2-family module.

Strobe PIN 0 ' LED on PO

I ===== [CongitamEs | ===
IsOn CON 1 ' on for active-high LED
IsOff CON 0 ' off for active-high LED
FlashOn CON 50 ' on for 50 ms

FlashOff CON 950 ' off for 950 ms

Page 30 - StampWorks

Reset:
Strobe = IsOff
OUTPUT Strobe ' enable pin to drive LED

Main:
DO
Strobe = IsOn
PAUSE FlashOn
Strobe = IsOff
PAUSE FlashOff
LOOP

Behind the Scenes

The version of the LED blinker gets to the core of the hardware and works at a lower
level — a little more setup work, yes, but the result is a program with greater
readability, as well as flexibility for modification. And there is no mistaking the
meaning of:

Strobe = IsOn

On reset, the LED control pin, called strobe, is set to its off state by writing the
IsOff constant to it, and then the pin is made an output so that it can drive the
LED. This is one of those rare cases where the oUTPUT keyword is used; the reason
is that after this point, LED control will be by writing to a bit in the OUTS register.

This initialization section demonstrates the context-sensitivity of the PIN declaration.
In actual fact, these lines of code:

Strobe = IsOff
OUTPUT Strobe

... are translated by the compiler to:

OUTO = 0
OUTPUT O

Note how the compiler intelligently substitutes oUTo in the first line of code, and the
number 0O in the second. Of course, we could have written the code as the compiler
ultimately translates it. The difference is that strobe is more meaningful (to us

Time to Experiment - Page 31

humans) in terms of program functionality, and any design change would have been
more difficult to deal with.

The main program loop is handled with the DOo-LOOP construct, and separate on-
and off-times are provided for flashing the LED. As with the pin configuration, we
can easily change the flash behavior by making a simple edit in the declarations
section. Since the LED has two states, having independent timing values for each
state gives us the greatest flexibility.

When does one make the choice between DO-LOOP and GOTO Label? While both styles
are functionally equivalent, Do-LoOP provides the convenience of not having to define a
program label for the GoTo. The downside of DO-LOOP is that it can be difficult to follow
when very long sections of code are embedded within it — especially when indentation
guidelines are ignored.

While there is no hard and fast rule, a reasonable guideline is that about ten lines of code
or fewer are fine for DO-LOOP ; longer sections are best used with GOTO Label.

Taking it Further

Another advantage to direct use of output bits is that we can create code segments
like this:

DO
Strobe = cntr.BITO
PAUSE 500
cntr = cntr + 1
LOOP

Can you tell what's happening here? Since Strobe is actually a bit variable (oUTO0 in
this program), we can write any bit value to it — even a bit that's part of another
variable. In the example above, BIT0 (the LSB) of entr will be written to the LED
control pin through each iteration of the program loop. Using our active-high
configuration, this will cause the LED to light when the value of entr is odd because
BITO, which has a value of one, will be on when cntzr is odd.

Q: Without changing the PAUSE 500 line, how could we make the LED flash at half
the current rate?

A: Write the value of entr.BIT1 to the LED. Do you understand why this is?

Page 32 - StampWorks

Write Code like a Pro

This version of the LED blinker is how a professional programmer would approach
the task. Why? What if you were asked to write a program that required several
LEDs and you assumed that they were active-high, yet after hours of work on the
program you were handed a schematic with LED connections that looked like this:

Vdd

470 Q ‘:\
Alarm LED

The LED in the schematic above is active-low; you must take the control pin low to
light the LED. Now you would be forced to change the HIGH commands that control
LEDs to Low, and then original LOW commands to HIGH which would be a lot of work
and possibly lead to the introduction of program errors.

The professional programmer builds flexibility into the program so that an electrical
design change can be accommodated with ease. By using the strategy employed in
this experiment, we only have to change the following declarations:

IsOn CON 0 ' on for active-low LED
IsOff CON 1 ' off for active-low LED

The rest of the program remains unchanged and is ready to run.

Time to Experiment - Page 33

EXPERIMENT #3: DISPLAY A COUNTER WITH LEDS

Most applications will require more than one LED, and from a programming stand-
point it is convenient to update all LEDs at the same time if possible. This
experiment demonstrates updating multiple LEDs by displaying a running 4-bit
counter.

Look It Up: PBASIC Elements to Know

e OUTS, OUTL, OUTH, OUTA - OUTD
e DIRS, DIRL, DIRH, DIRA - DIRD
e FOR-NEXT

Building the Circuit

E
PO|>—Q_MA'_N_E 5
P1|>—D—'\N\,—’|—1/|

: 2,

P2 - ;
P3 bl

For this experiment we will add three more LEDs to the circuit used in Experiments
#1 and #2.

1. Start with four three-inch (8 cm) segments of white hook-up wire. Strip Y-
inch (6 mm) of insulation from each end.

2. Plug one end of a wire into BASIC Stamp connection for PO.

3. Plug the other end into LED 0.

4. Repeat steps 2 and 3 for P1 — P3 connecting to LEDs 1 — 3, respectively.

Page 34 - StampWorks

Program: SW21-EX03-Counter_LEDs.BS2:

' {$sTAMP BS2}
' {$PBASIC 2.5}

' Displays a 4-bit binary counter on LEDs connected to PO - P3. This
' program will work, unmodified, on any BS2-family module.

LEDs VAR OUTA LEDs on PO - P3

LEDsDirs VAR DIRA DIRS control for LEDs

I ===== [Comgitemits | ===
MinCount CON 0 counter start value
MaxCount CON 15 counter end value
DelayTm CON 100 delay time for LEDs

I ===== [Veriglhleg | ===
cntr VAR Nib 4-bit counter variable

I ===== [radiEilalizatlem | ==
Reset:

LEDsDirs = %1111

Main:
DO

FOR cntr = MinCount TO MaxCount

LEDs = cntr
PAUSE DelayTm
NEXT
LOOP

make LEDs outputs

loop through all values
move count to LEDs
hold a bit

repeat forever

Time to Experiment - Page 35

Behind the Scenes

As explained in Experiment #1, the state of the BASIC Stamp output bits is stored in
a RAM register called ouTs. The variable oUTA is the lower 4-bits of OUTS,
corresponding to 1/0 pins PO — P3. Since oUTA is part of the BASIC Stamp’s general
purpose (RAM) memory, values can be written to and read from it like any other
variable.

In this program we simply transfer (copy) the contents of 4-bit variable cntr to
OUTA (alias for the LEDs). Since PO — P3 have been made outputs, this causes the
value of entr to be displayed on the LEDs in binary format.

Challenge yourself: Modify the program to count backwards.

Q: Can we get the same results without using the entr variable?
A: Yes — simply use LEDs as the control variable for the FOR-NEXT loop.

Write Code like a Pro

Since we're dealing with multiple LEDs as a group and we cannot take advantage of
the PIN type declaration, we're forced to use a standard variable (OUTA in this case)
to update the LEDs simultaneously. When possible, it's best to group outputs to
match the natural boundaries of the BASIC Stamp 1/0 and memory structure. Our
programs will not always be as neat and tidy as this experiment, but when we do
indeed end up with groupings of four or eight pins, it's best to use the BASIC
Stamp’s natural boundaries.

And note that while the LEDsDirs variable does not actually control the state of the
1/0 pins, it does set pin directions and this is required for making these pins outputs
with a single line of code. For this reason, it is defined near the LEDs declaration in
the 1/0 definitions block. If we needed to make a design change that moved the
LEDs to ouTD, for example, the required changes would take place in the same area
of the program.

LEDs VAR OUTD ' LEDs on P12 - P15
LEDsDirs VAR DIRD ' DIRS control for LEDs

Page 36 - StampWorks

EXPERIMENT #4: SCIENCE FICTION LED DISPLAY

We've seen how LEDs can be used to display a binary value (Experiment #3), and
now we’ll take it just one more step and do something a bit artistic. In this
experiment we'll “ping-pong” one lit LED across a bank of eight to create a science-
fiction (zhink evil robot warrior) type display. Circuits like this are frequently used in
film and television props.

Look It Up: PBASIC Elements to Know

e WHILE (related to DO-LOOP)
e UNTIL (related to DO-LOOP)
e < (less than operator)

e << (shift left operator)

e >> (shift right operator)

Building the Circuit

For this experiment we will add four more LEDs to the circuit used in Experiment #3.

1. Start with eight three-inch (8 cm) segments of white hook-up wire. Strip Ya-
inch (6 mm) of insulation from each end.
2. Plug one end of a wire into BASIC Stamp connection for PO.

Time to Experiment - Page 37

3. Plug the other end into LED 0.
4. Repeat steps 2 and 3 for P1 — P7 connecting to LEDs 1 — 7, respectively.

Program: SW21-EX04-SciFi_LEDs.BS2:

' {$sTAMP BS2}
' {$PBASIC 2.5}

' "Ping-Pongs" a single LED back-and-forth across a bank of eight. This
' program will work, unmodified, on any BS2-family module.

77777 [I/O0 Definitions J----------c-ooommmmom oo

LEDs VAR OUTL ' LEDs on PO - P7
LEDsDirs VAR DIRL ' DIRS control for LEDs
I ===== [Comgitemits | ===
DelayTm CON 100 ' delay time for 1lit LED
L [Initialization J--------c---cmm oo
Reset:
LEDS = %00000001 ' start with right LED on
LEDsDirs = $%$11111111 ' make LEDs outputs

Main:

DO WHILE (LEDs < %$10000000) ' test for left extreme
PAUSE DelayTm ' on-time for 1lit LED
LEDs = LEDs << 1 ' shift LED left

LOOP

DO
PAUSE DelayTm
LEDs = LEDs >> 1 ' shift LEDs right

LOOP UNTIL (LEDs = %00000001) ' test for right extreme

GOTO Main

Page 38 - StampWorks

Behind the Scenes

This experiment demonstrates the ability to directly manipulate the BASIC Stamp
output pins just as we could any other variable. This program also demonstrates
conditional looping by adding pre- and post-loop tests to DO-LOOP.

The program starts by initializing the LEDs to %00000001 — this turns on the LED
connected to PO. Then we drop into the first Do-LOOP where the value of LEDs is
immediately tested. If the value of LEDs (currently %00000001) is less than
210000000 then the code within the DO-LOOP is allowed to run, otherwise the
program continues at the line that follows LOOP.

Since LEDs is initially less than the test value, the program drops into the loop where
it runs a small PAUSE, then the lit LED is moved to the left with the << (shift-left)
operator. Shifting left by one bit performs the same function as multiplying by two,
albeit far more efficiently. After the shift the program goes back to the DO WHILE
line where the value of LEDs (now %00000010) is tested again.

After seven passes through the upper loop, LEDs will have a value of %10000000
and the test will fail (result will be False); this will force the program to jump to the
top of the second DO-LOOP.

The second DO-LOOP is nearly identical to the first except that the value of LEDs is
shifted right one bit with >> (same as dividing by two), and the test occurs at the
end of the loop. Note that when the test is placed at the end of the DO-LOOP
structure, the loop code will run at least one time. After seven iterations of the
bottom loop the test will fail and the code will drop to the GOTO Main line which
takes us back to the top of the program.

Beginning programmers will often ask, “When should | use WHILE versus UNTIL in a loop
test?”

It is in fact possible to write functionally equivalent code using WHILE or UNTIL. That said,
your programs will be easier to others to follow (and for you to pick up later) if the listing
reads logically. To that end, it is suggested that WHILE is used to run the loop while a
condition is true; and UNTIL is used to run the loop until a condition becomes true.

Time to Experiment - Page 39

Taking it Further

Q: How could we modify the code to cause the LEDs to behave like airport runway
lights?
A: See below for one possible solution (Can you modify the loop to test at the top?)

Reset:
LEDsDirs = $11111111 ' make LEDs outputs
L [Program Code J----------------—-“—-—-“—~ -~ -~ -~ -~~~ -~~~ —~—~———
Main:
LEDs = %00000001 ' start with right LED on
DO
PAUSE DelayTm ' on-time for 1lit LED
LEDs = LEDs << 1 ' shift LED left
LOOP UNTIL (LEDs = %10000000) ' test for last LED
GOTO Main

Write Code like a Pro

In this experiment we use binary (%) notation quite frequently — this is a handy tool

when our programming editor (like the BASIC Stamp IDE) allows it. This bit of code,
for example:

LOOP UNTIL (LEDs = %10000000) ' test for last LED

... is far easier to visualize than:

LOOP UNTIL (LEDs = 128) ' test for last LED

When dealing with binary inputs (e.g., buttons or switches) or outputs (e.g., a bank
of LEDs), use binary notation to help yourself (and others) “see” the operation of the
code.

Page 40 - StampWorks

EXPERIMENT #5: LED GRAPH (DOT OR BAR)

In Experiment #4 we used a line of LEDs for artistic purposes; this time we’ll turn to
something a bit more technically oriented. The purpose of this experiment is to
create a configurable (dot or bar) LED graph. This type of graph is very common on
audio equipment, specifically for VU (volume) meters. The value for the graph in the
experiment will be taken from the position of a potentiometer.

Look It Up: PBASIC Elements to Know

e Word (variable type)

e Byte (variable type)

e GOSUB-RETURN

e RCTIME

¢ IF-THEN-ELSE-ENDIF
e */ (star-slash operator)
e DCD

Building the Circuit
Add the following RC circuit to the LEDs used in Experiment #4.

P15 &

Note: The 0.1 pF capacitor is marked: 104.

1. Using black wire (cut as required), connect the Vss (ground) rail to socket
A15.

2. Plug a 0.1 pF capacitor (marked 104) into sockets C15 and C16.

3. Using white wire, connect socket A16 to BASIC Stamp P15.

Time to Experiment - Page 41

4. Using white wire, connect socket B16 to the wiper (center terminal) of the
10K potentiometer.

5. Using black wire, connect the Vss (ground) rail to the bottom terminal of the
10K potentiometer.

Program: SW21-EX05-LED_Graph.BS2:

' {ssTAMP BS2}
' {$PBASIC 2.5}

' Displays a linear (bar) or dot graph using eight LEDs. This program
' will require modifications (to the constants LoScale and HiScale) when
' running on the BS2Sx, BS2p, or BS2px.

LEDs VAR OUTL ' LEDs on PO - P7

LEDsDirs VAR DIRL ' DIRS control for LEDs

Pot PIN 15 ' Pot circuit IO

I coces [N Cen s Fantc I e e e R L L L L L
DotGraf CON 0 ' define graph types
BarGraf CON 1

GraphMode CON BarGraf ' define graph mode

IsOn CON 1

IsOff CON 0

LoScale CON 10 ' raw low reading

HiScale CON 695 ' raw high reading

Span CON HiScale - LoScale ' between lo-to-hi

Scale CON SFFFF / Span ' scale factor 0..255

L [Variables J--------------om oo oo oo
rawVal VAR Word ' raw value from pot
grafval VAR Byte ' graph value

hiBit VAR Byte ' highest lighted bit

newBar VAR Byte ' workspace for bar graph

Page 42 - StampWorks

[[Initialization]

Reset:
LEDsDirs = %$11111111

Main:
DO
GOSUB Read_Pot
grafval = (rawVal - LoScale) */ Scale
GOSUB Show_Graph
PAUSE 50
LOOP
L [Subroutines]------------------------
Read_Pot:
HIGH Pot
PAUSE 1
RCTIME Pot, 1, rawVal
RETURN
Show_Graph:

hiBit = DCD (grafval / 32)
IF (GraphMode = BarGraf) THEN
newBar = 0
IF (grafval > 0) THEN
DO WHILE (hiBit > 0)
newBar = newBar << 1
newBar.BITO = IsOn
hiBit = hiBit >> 1

LOOP
ENDIF
LEDs = newBar
ELSE
LEDs = hiBit
ENDIF

RETURN

get raw pot value
z-adjust, then scale
now show it

charge cap
for 1 millisecond
read the Pot

get highest bit
clear bar workspace
all bar LEDs 1lit?
no - shift left
light low end

mark bit 1lit

output new level

show dot value

Time to Experiment - Page 43

Behind the Scenes

Now we're getting into it — this program, while short, is a bit on the sophisticated
side as it allows us to enter raw readings from the potentiometer and the program
will take care of the rest.

After initializing the outputs (PO — P7) to drive LEDs, the program reads the 10K
potentiometer with the RCTIME function. Using DEBUG to display the raw value, it
was determined that RCTIME returned a low value of 10 and a high value of 746.
Since grafVal is a byte-sized variable, rawVal must be scaled down to fit into
eight bits.

To scale the raw value to fit into grafval we'll want to divide it by 2.73 (695 / 255).
The problem for us is that division in PBASIC is integer-only, so we'd end up with
troublesome rounding errors. Since division is the same as multiplying by a value’s
reciprocal, we can multiply rawval by 0.366906. In some cases we can do a
multiply and divide to approximate the fractional value, but this is not possible
because the 16-bit (final) values used in PBASIC may cause high bit truncation.

This is where the */ (star-slash) operator comes in: this operator allows us to
multiply a value by another with a resolution of 1/256. The way this works is that */
does a multiplication of two values, then takes the middle two bytes of the 32-bit
result — the net effect is that we’re multiplying then immediately dividing by 256
(hence the resolution of 1/256). If the fractional value is going to be a constant we
can calculate the*/ parameter in advance by multiplying the fractional value by 256.
In our case this would be:

0. 366906 x 256 = 93.92 (round up to 94)

As it turns out we can very easily calculate the value of Scale by dividing $FFFF
(maximum 16-bit value) by the pot span (difference between high and low readings).
Better yet, we can embed this calculation in a constant definition — this saves us
valuable variable space. At the top of the listing we have:

LoScale CON 10 ' raw low reading

HiScale CON 695 ' raw high reading

Span CON HiScale - LoScale ' between lo-to-hi
1

Scale CON SFFFF / Span scale factor 0..255

Page 44 - StampWorks

If we decide to replace the BS2 with a faster microcontroller, for example a BS2p,
the only thing we need to do is read the pot and enter the low and high readings
from it. After we make those changes the Scale constant will be updated on the
next compilation and the program will run just as it did on the BS2.

You may be wondering why the LoScale value is something greater than 0. If you
look at the schematic, there is a 220-ohm resistor between the pot's wiper and the
center connection. The purpose of this resistor is to protect the BASIC Stamp when
the pot is turned all the way to Vss and the P15 is made an output and high; it also
causes a bit of delay in the capacitor discharge, hence the minimum value that is
greater than zero.

With grafval scaled to a byte we can move on to creating the bar or dot graph
with the LEDs. The program uses the DCD operator to determine highest lighted bit
value from grafval. With eight LEDs in the graph, grafval is divided by 32,
forcing the result of DCD to output values from $00000001 (DCD 0) to $10000000
(ocp 7).

In Dot mode, this is all that's required and a single LED that represents the scale of
the pot input is lit. In Bar Mode, however, the lower LEDs must be filled in. This is
accomplished in a simple loop. The control value for the loop is the variable, hiBit,
which is also calculated using DCD. In this loop, hiBit will be tested for zero to exit,
so each iteration through the loop will decrement (decrease) this value.

If hiBit is greater than zero, the bar graph workspace variable, newBar, is shifted
left and its bit O is set. For example, if DCD returned $1000 in hiBit, here's how
hiBit and newBar would be affected through the loop:

hiBit newBar

1000 0001
0100 0011
0010 0111
0001 1111

0000 (done - exit loop and display value)

The purpose for the variable, newBar, is to prevent the LEDs from flashing with each
update. This allows the program to start with an “empty” graph and build to the

Time to Experiment - Page 45

current value. With this technique, the program does not have to remember the
value of the previous graph.

Write Code like a Pro

As your programs become more and more complex, it's important to code and test a
section at a time. In this program there are two separate subroutines; each was
independently coded and tested before incorporating them together. Independent
testing of code modules is particularly important when the program is already
working — there is nothing more frustrating than “breaking” a perfectly good program
by adding untested code.

Page 46 - StampWorks

EXPERIMENT #6: A SIMPLE GAME

With the increase in power of small microcontrollers, hand-held games have become
a part of our cultural norm. The purpose of this experiment is to create a simple
slot-machine type game with the BASIC Stamp, complete with lights and sounds
effects.

Look It Up: PBASIC Elements to Know

e RANDOM

e & (And operator)
e FREQOUT

e BUTTON

e LOOKUP

e #DEFINE (conditional compilation)
e H#IF-#THEN-#ELSE-#ENDIF (conditional compilation)

Building the Circuit

0 i 470Q // :
PO >——o—W—PF2 P6 [>— 5
11 /;1
P1 O——o—AW—PFe |
2} /;, __________________________ ;
P2 D—Q—'VW_N_" Audio Amplifer
3 7

D—o—W—PF
P3 /}' __________________________
P4 O——o—W—Pi 9

P5 [O—o—W\—P—)

=

Time to Experiment - Page 47

Using white wire, connect BASIC Stamp pins PO — P5 to LEDs 0 — 5.

2. Using white wire, connect BASIC Stamp pin P6 to the Audio Amplifier
(set the speaker selection shunt to SPK).
3. Using white wire, connect BASIC Stamp pin P7 to a pushbutton.

Program: SW21-EX06-Las_Vegas.BS2

' {$sTAMP BS2}
' {$PBASIC 2.5}

OUTL
DIRL

This program simulates a very simple slot machine game,
sound FX. The constants TAdj and FAdj may require adjustment when using
on faster BASIC Stamp modules.

complete with

LED outputs
DIRS control for LEDs

speaker output
button input to play

CongtanEs ||===

time adjust factor
frequency adjust factor

L [Variables J--------------om oo oo oo

LEDs VAR
LEDsDirs VAR
Speaker PIN
PlayBtn PIN
R [
TAd] CON
FAd] CON
rndVal VAR
pattern VAR
tone VAR
swData VAR
delay VAR
spinl VAR
spin2 VAR
L [Initialization]
Reset:

LEDsDirs = %$00111111

Word
Byte
Word
Byte
Word
Byte
Byte

random number

light pattern

tone output

workspace for BUTTON
delay while "spinning"
loop counter

loop counter

make LEDs outputs

Page 48 - StampWorks

Main:
DO
GOSUB Get_ Random
FREQOUT Speaker,
PAUSE 100
BUTTON PlayBtn, O,
LOOP

255, 10,

Spin:
LEDs = %00111111
PAUSE 750
LEDs = %00000000
PAUSE 500
delay = 75

FOR spinl = 1 TO 25
GOSUB Get_Random
FREQOUT Speaker,
PAUSE delay

35 */ TAdJ,

swData, 1,

25 */ TAdJ,

tone */ FAQ4j '

Spin '

425 */ FAdj !

delay = delay */ $0119
NEXT
IF (pattern = %00111111) THEN !
FOR spinl = 1 TO 5
FOR spin2 = 0 TO 3
LOOKUP spin2, [$00, $0C, $12, $21], LEDs
LOOKUP spin2, [665, 795, 995, 1320], tone

FREQOUT Speaker,
PAUSE 65
NEXT
NEXT
ELSE
FREQOUT Speaker,
ENDIF

Clear_Game:

LEDs = $00000000
PAUSE 1000
GOTO Main

I coococ [

Get_Random:
RANDOM rndVal

tone = rndval & $7FF
pattern = rndval & %$00111111
LEDs = pattern

RETURN

1000 */ TAQ4j,

35 */ TAdj, tone */ FAdjJ

330 */ FAdj '

get random number/tone
sound the tone

check for play

simulate machine reset

initialize delay

spin the wheel

get random number
wheel click

pause between clicks
multiply delay by 1.1

if all 1lit, you win

otherwise, groan...

clear LEDs

do it again

Subroutines J------------c-om oo

get pseudo-random number
keep in reasonable range
mask out unused bits
show the pattern

Time to Experiment - Page 49

Behind the Scenes

One of the key aspects of this program is that it demonstrates how to put more
randomness into the pseudo-random nature of the RANDOM function. This is done by
adding a “human touch.”

The program waits in a loop at Main. The top of this loop calls Get_Random to
create a pseudo-random value, a tone for the speaker and to put the new pattern on
the LEDs. On returning to the loop, the tone is played and the button input is
checked for a press. The program will remain in this loop until we press the button.

The BUTTON instruction is used to debounce the input. Here's what gives the
program its randomness: the time variations between button presses (during which
the RANDOM function is continually called, hence tumbling the value). When the
button is pressed, the LEDs are lit and cleared to simulate the game resetting. Then,
a FOR-NEXT loop is used to simulate the rolling action of a slot machine. For each
roll, a “click” sound is generated and the delay between clicks is modified (increased
by 10%) to simulate natural decay (slowing) of the “wheels.”

If all six LEDs are lit after the last spin, the program plays a little light and sound
show to celebrate our good fortune. This section uses LOOKUP to play a preset
pattern of LEDs and tones before returning to the top of the program. If any of the
LEDs are not lit, a groan will be heard from the speaker and the game will restart.

Taking It Further

Can you modify the program so that fewer than six LEDs are required for a win?
How can this be done?

Write Code like a Pro

Instead of waiting for an actual “win” we can rig the game to win every time by
inserting a line of code:

pattern = %00111111

. . . before the section that tests the pattern bits. This is useful for fine-tuning the
celebration routine — just be sure to remove this code before delivering the final

Page 50 - StampWorks

project. In some programs where we may have several sections used for testing, or
we need the ability to turn test code on and off, inserting a conditional compilation
block will facilitate the quick removal and restoration of test code.

We can use #DEFINE to create a conditional constant

#DEFINE TestMode = 1

When _TestMode is defined as 1 the code nested in #IF-#THEN will run, otherwise
it will not even be compiled or downloaded to the BASIC Stamp.

#IF TestMode #THEN
pattern = %00111111
#ENDIF

Be aware that enabling conditional compilation blocks like the one shown above will
increase the program size — if you're going to be creating a large program you should
enable them from the beginning so that you don’t run out of space when you need
them later.

Time to Experiment - Page 51

EXPERIMENT #7: A LIGHTING CONTROLLER

The purpose of this experiment is to create a small lighting controller, suitable for
holiday displays and outdoor decorations. The outputs of this circuit will be LEDs
only (To control high-voltage lighting take a look at Matt Gillland's Microcontroller
Application Cookbook).

Look It Up: PBASIC Elements to Know

e DATA

e // (Modulus operator)
e ON-GOSUB

e READ

Building the Circuit

P7 CF——7¢

Page 52 - StampWorks

Using white wire, connect BASIC Stamp pins PO — P5 to LEDs 0 — 5.

Plug a 0.1 pyF (marked 104) capacitor into sockets C15 and C16.

Using white wire, connect socket A16 to BASIC Stamp P6.

Using a blackwire, connect socket A15 to the Vss (ground) rail.

Using white wire, connect socket B16 to the wiper (center terminal) of the
10K potentiometer.

Using black wire, connect the Vss (ground) rail to the bottom terminal of the
10K potentiometer.

7. Using white wire, connect BASIC Stamp pin P7 to a pushbutton.

ogrwNE

o

Program: SW21-EX07-Light_Show.BS2

1

{$sTAMP BS2}
{$pPBASIC 2.5}

Runs a small, multi-mode light show controller using six outputs (runs
on LEDs, but with proper interfacing could run incandescent lamps) .
This program will require modifications (to the constants LoSpeed and
Scale) when running on the BS2Sx, BS2p, or BS2px.

Lights VAR OUTL ' light control outputs
LightsDirs VAR DIRL ' DIRS for lights outputs
Speed PIN 6 ' speed control Pot input
LtMode PIN 7 ' mode select input

I ===== [CongitamEs | =======================================s===============
LoSpeed CON 10 ' low end of POT reading
Scale CON $0163 ' 1.3868 with */

L [Variables J-------------mmmmm oo oo -
rawSpd VAR Word ' speed input from POT
delay VAR Word ' time between patterns
btnvar VAR Byte ' workspace for BUTTON
mode VAR Byte ' selected mode

offset VAR Byte ' offset into patterns
rndval VAR Word ' workspace for RANDOM

Time to Experiment - Page 53

1 —==== [TOEEOM DEER | ===

%$001000, %010000
%000100, %000010
%$001000, %010000
%$100001

calculate length

SeqA DATA %$000001, %000010, %000100,
DATA %$100000

SegB DATA %$100000, %010000, %001000,
DATA %$000001, %000010, %000100,

SeqC DATA %$000000, %001100, %010010,

SegD DATA %$100100, %010010, %001001

SeqE DATA %0

AMax CON SegB - SegA

BMax CON SeqC - SegB

CMax CON SegD - SeqgC

DMax CON SegE - SegD

I coces [TmlEilaldzaEdem || eccrceronersrcncnsrssnsnorororosororososononononoo

Reset:

LightsDirs = %00111111

Main:
GOSUB Read_ Speed
delay = (rawSpd - LoSpeed)
PAUSE delay

*/ Scale + 50

Switch Check:
BUTTON LtMode, 0, 255, 0, btnvVar, 0, Show
mode = mode + 1 // 5

Show :

1

ON mode GOSUB ModeA, ModeB, ModeC, ModeD, ModeE

GOTO Main

read speed pot
calc delay (50-1000 ms)
wait between patterns

new mode?
yes, update mode var

I ===== [Sulsreutingg ||===

Read_Speed:
HIGH Speed
PAUSE 1
RCTIME Speed, 1, rawSpd
RETURN

ModeA:
offset = offset + 1 // AMax

1

charge cap
for 1 millisecond
read the Pot

update offset (0 - 5)

Page 54 - StampWorks

READ (SegA + offset), Lights ' output new light pattern
RETURN

ModeB:
offset = offset + 1 // BMax
READ (SegB + offset), Lights
RETURN

ModecC:
offset = offset + 1 // CMax
READ (SeqC + offset), Lights
RETURN

ModeD:
offset = offset + 1 // DMax
READ (SegD + offset), Lights

RETURN

ModeE:
RANDOM rndvVal ' get random number
Lights = rndval & %00111111 ' light random channels
RETURN

Behind the Scenes

Overall, this program is simpler than it first appears. The main body of the program
is a loop. Timing through the main loop is controlled by the position of the
potentiometer. RCTIME is used to read the pot and during development the
maximum pot reading was found to be 695, and the minimum reading was 10. What
we'd like to do is convert the span 10 — 695 to 50 — 1000.

The process is actually quite simple: the desired output span (950) is divided by the
input span (685) to provide a scale factor of 1.3868. This factor is converted for use
with */ by multiplying by 256 (355 or $0163). In application the low end pot value
is subtracted from the raw input, the scale factor applied, and then the minimum
output value of 50 is added. Those with a flair for mathematics will recognize the
familiar y = mx+b equation.

The code at Switch Check looks to see if the button is pressed. If it is, the
variable, mode, is incremented (increased by 1). The modulus (//) operator is used
to keep mode in the range of zero to four. This works because the modulus operator
returns the remainder of an integer division. Since any number divided by itself will

Time to Experiment - Page 55

return a remainder of zero, using modulus in this manner causes mode to “wrap-
around” from four to zero.

The final element of the main loop is called show. This code uses ON-GOSUB to call
the code that will output the light sequence specified by mode. Modes A through D
work similarly, retrieving light sequences from the BASIC Stamp’s EEPROM (stored in
DATA statements). Mode E outputs a random light pattern.

Take a look at the code section labeled ModeA. The first thing that happens is that
the variable, offset, is updated — again using the “wrap-around” technique with
the modulus operator. The value of offset is added to the starting position of the
specified light sequence and the current light pattern is retrieved from EEPROM with
READ. Notice that the DATA statements for each sequence are labeled (Seqga, SegB,
etc.). Internally, each of these labels is converted to a constant value that is equal
to the starting address of the sequence. The length of each sequence is calculated
with these constants. By using this technique, light patterns can be updated
(shortened or lengthened) without having to modify the operational code called by
Show. ModeE is very straightforward, using the RANDOM function to output new
pattern of lights with each pass through the main loop.

Take it Further

Add a new lighting sequence. What sections of the program need to be modified to
make this work?

Write Code like a Pro

The modulus operator (//) is extremely useful, yet shunned by many beginning
programmers as “mysterious.” It's not, really, in fact its operation is very simple: it
returns the remainder of an integer division. In practice what this means is that the
modulus of any value will fall into the range of zero to the value minus one.

Beginners will often do this:

idx = idx + 1

IF (idx = 5) THEN
idx = 0

ENDIF

Page 56 - StampWorks

The pro will replace that code with:

idx = idx + 1 // 5
But what if we wanted to go the other direction, that is, wrap from zero back up to
some number?

idx = idx - 1

IF (idx = 0) THEN

idx = 4
ENDIF

Yes, this is possible too. Here's how:
idx = idx + 4 // &5

Can you see what's happening? We're adding the number of elements in the
sequence (5) minus one to idx; the net effect is that we end up subtracting one
from idx when modulus is used to remove the whole result of the division.

This is a very handy trick — keep it in your bag.

Building Circuits on Your Own - Page 57

Building Circuits on Your Own

With the experience you've gained in the previous experiments you're ready to
assemble what follows without specific point-to-point wiring instructions. Don't be
nervous, you can do it. The projects are fairly simple and you'll see that they're
electrically similar to the projects you've already built; what we’re going to focus on
is new code techniques.

Proceed slowly and be sure to double-check your connections before you apply
power. Remember, it's always best to clear the BASIC Stamp’s memory and 1/0
setup between experiments — and that can be done with a very simple program:

' {s$sTAMP BS2}
Main:

DEBUG "The BASIC Stamp is ready."
END

Are you ready for some more fun? You should be, and know that you're well on you
way to designing your own BASIC Stamp projects and experiments.

Okay, then, let's continue with 7-Segment LED displays....

Page 58 - StampWorks

Using 7-Segment LED Displays - Page 59

Using 7-Segment LED Displays

As you look around and notice devices that use them, you’ll see that LEDs come in all
manner of shape, size, and color. Early on, LED manufacturers found that they could
package seven rectilinear-shaped LEDs in a Figure-8 pattern and when specific
groups of LEDs were lit, the display could be any of the decimal digits and even a
few alpha characters. We call these packaged groups of LEDs 7-segment displays.

In order to simplify wiring, 7-segment LED displays have a common internal
connection; the LEDs used on the PDB are common-cathode, that is, the cathodes of
the LEDs within the display are connected together and that connection must be
made low (connected to Vss) in order to light any of the LEDs in the package. The
diagram below shows the connections of a common-cathode LED display in relation
to the current-limiting resistors on the PDB.

T\\I\\I\\I\\I@T\\T\:‘f\\

Note that the PDB has five, 7-segment, common-cathode LED modules, and the
terminal marked “A” in the “SEGMENTS” section is connected to the A-segment LED
in all five modules.

In the experiments that follow we will learn how to get the most out of 7-segment
displays.

Page 60 - StampWorks

EXPERIMENT #8: A SINGLE-DIGIT COUNTER

The purpose of this experiment is to get us started with 7-segment LED displays by
creating a simple, single-digit decimal counter.

Building the Circuit

PO [DO———0—MA—
P1 [O——o0—MW\—]
P2 [DO——0—A\W—] ’-'
P Ei <)
Ps [D>——0—AM—
P5s [O———o0—MA— , ’
P6 [O——0—M\—]
P7 [DO——o—AMA—]

DIGITO ! |
a

L I

Program: SW21-EX08-7-Seg_Counter.BS2

' {$sTAMP BS2}
' {$PBASIC 2.5}

<
»
»

' Displays decimal digits (0 - 9) on a 7-Segment display connected to
' P0-P7. This program will work, unmodified, on any BS2-family module.

Segs VAR OUTL ' Segments on PO - P7
SegsDirs VAR DIRL ' DIRS for segments

Using 7-Segment LED Displays - Page 61

I ===== [Veriglsleg | ===

idx VAR Nib ' counter variable

1 —==== [TOEEOM DEER | ===

0 .GFEDCBA
L
DigitO DATA %00111111
Digitl DATA %$00000110
Digit2 DATA %$01011011
Digit3 DATA %$01001111
Digit4 DATA %$01100110
Digit5s DATA %$01101101
Digite DATA %$01111101
Digit7 DATA %$00000111
Digit8 DATA %$01111111
Digit9 DATA %$01100111
I coces [TmlEilaldzaEdem || eccrceronersrcncnsrssnsnorororosororososononononoo
Reset:

SegsDirs = %$01111111 ' make outputs for LEDs
L [Program Code J---------------“—““—“—““——“—~—~—~—~—~—~—~— -
Main:

FOR idx = 0 TO 9 ' loop through digits

READ (Digit0 + idx), Segs ' move pattern to display
PAUSE 1000
NEXT
GOTO Main

Behind the Scenes

This experiment is very similar to the light show program in basic operation: a
pattern is read from the EEPROM and transferred directly to the LED segments. In
this program, sending specific patterns to the 7-segment LED creates the digits zero
through nine.

To demonstrate that all five modules have the segment lines tied together (and
connected to terminals A through DP, respectively), move the Vss connection from
DIGIT O to DIGIT 4. See what happens?

Page 62 - StampWorks

Take it Further

Update the program to create a single-digit hexadecimal counter. Use the patterns
below for the HEX digits.

EEIWEIRE

Write Code like a Pro

Note that the DATA table the stores the 7-segment patterns uses verbose label
names and the patterns are placed in sequential order. By storing the segment
information in EEPROM instead of constants, transferring these patterns to the
display is greatly simplified.

Had we elected to store the patterns as constant values, we'd have to use the
following bit of code to make the transfer:

LOOKUP idx, [Digit0, Digitl, Digit2, Digit3, Digit4,
Digit5, Digité, Digit7, Digit8, Digit9], Segs

As you can see, using READ is a bit tidier. In most programs, storing table values in
DATA statements will simplify coding and save code space if the same values are to
be used in more than one place in the program.

Using 7-Segment LED Displays - Page 63

EXPERIMENT #9: A DIGITAL DIE

In Experiment #6 we created a simple game; this time around we’ll make a simple
digital die (on half of a pair of dice) that can be used when we play our favorite
board games.

Building the Circuit

Add this pushbutton to the circuit in Experiment #8.

Vdd

10 kQ

P15

Program: SW21-EX09-Roller.BS2

' {ssTAMP BS2}
' {$PBASIC 2.5}

This program combines a 7-segment display and pushbutton input to form
a digital die that displays numbers 1 - 6. This program will work,
unmodified, on any BS2-family module.

Segs VAR OUTL ' Segments on PO - P7
SegsDirs VAR DIRL ' DIRS for segments
RollBtn PIN 15 ' roll button for die

I ===== [Veriglslag | ===

Page 64 - StampWorks

rndval VAR Word ' random number

swData VAR Byte ' workspace for BUTTON
dieval VAR Nib ' new die value

spinPos VAR Nib ' spinner position
doSpin VAR Nib ' spinner update control

I coso= R R O M T T T T e

! .GFEDCBA
e e e e e =
Digito DATA %$00111111 ' digit patterns
Digitl DATA %$00000110
Digit2 DATA %$01011011
Digit3 DATA %$01001111
Digit4 DATA %$01100110
Digit5s DATA %$01101101
Digiteé DATA %¥01111101
Digit7 DATA %$00000111
Digits8 DATA %$01111111
Digit9 DATA %$01100111
! .GFEDCBA
e e e e e =
Bug0 DATA %00000001 ' animated "bug" frames
Bugl DATA %$00000010
Bug2 DATA %$00000100
Bug3 DATA %$00001000
Bug4 DATA $00010000
Bug5 DATA %$00100000
BugLen CON Bug5 - Bug0 + 1 ' calc animation length
I coces [TmlEilaldzaEdem || eccrceronersrcncnsrssnsnorororosororososononononoo
Reset:

SegsDirs = %$01111111 ' make outputs for LEDs
L [Program Code J-------------—---—--“—“—““——~—~—~—~—~——~—~—— -
Main:

DO

GOSUB Tumble Die ' shake the die
PAUSE 5 ' loop pad

' check for button press
BUTTON RollBtn, 0, 255, 5, swData, 1, Show Die
LOOP

Using 7-Segment LED Displays - Page 65

Show_Die:
READ (DigitO0 + dieVal), Segs ' transfer die to segments
PAUSE 3000 ' hold for viewing
GOTO Main ' start again

————— [Suoreuitimeg [|===

Tumble Die:

RANDOM rndVal stir random value

1
dieval = (rndval // 6) + 1 ' get die val, 1 - 6
doSpin = (doSpin + 1) // 10 ' update spin timer
IF (doSpin = 0) THEN ' time for update
spinPos = (spinPos + 1) // BugLen ' yes, point to next pos
READ (Bug0 + spinPos), Segs ' output to segments
ENDIF
RETURN

Behind the Scenes

This program borrows heavily from what we’ve already done and should be easy to
understand. What we've done here is added a bit of programming creativity to make
a very simple program visually interesting.

Of note is the Tumble Die subroutine which actually does quite a lot of work. The
first thing this routine does is shake the random number generator. Since the main
loop will call this subroutine about every five milliseconds, it's getting a lot of shaking
and should give us nice random results.

From the random number the die value is created. Remember what we learned
about the modulus operator: it will always return a value between zero and the
divisor. Since there are six faces on a die, we divide the random value by six and
take the modulus; this gives us zero to five. Adding one “fixes” the value so it's
between one and six.

Finally, this same subroutine is responsible for updating the animated “bug” used to
indicate the die being shaken. If we updated the frame through every pass of the
subroutine the display would look more like a flickering zero than an animation — we
need to slow things down, perhaps updating the animation every tenth time through
(which would give us a bit more than 50 ms per frame). This is accomplished by
using doSpin as a timer. This value gets incremented then divided by 10 (with //)
on every pass; when the modulus result is zero it's time to update the animation

Page 66 - StampWorks

“frame.” The delay between frames allows us to seem them more clearly and
creates a more inviting display.

Take it Further

Update the program to make the animated bug run around in a “Figure-8” pattern as
show below.

Using 7-Segment LED Displays - Page 67

EXPERIMENT #10: A DIGITAL CLOCK

The purpose of this experiment is to create a simple digital clock using four, 7-
Segment displays. Through this experiment we'll gain a bit of insight to the process
of display multiplexing, and discover a trick that lets us know when an input has
changed to a specified state.

Look It Up: PBASIC Elements to Know
e DIG (digit operator)

Building the Circuit

PO
P1

=l ===

: LT

P7 DO o—MW\—

DIGIT3 |

P11
DIGIT2 !
P10 :
DIGIT1 |

P9
DIGITO :

P8

P15 G—Q PULSE GENERATOR

Page 68 - StampWorks

Program: SW21-EX10-Clock.BS2

' {$sTAMP BS2}
' {$PBASIC 2.5}

' This program takes an external 1 Hz signal from the pulse generator and
' synthesizes a simple clock/timer. This code will run, unmodified, on and
' BS2-family module.

e [I/O0 Definitions J-----------ccoommmmoo oo

Segs VAR OUTL ' Segments on PO - P7
Digs VAR ouTC ' Digit control pins
Tic PIN 15 ' 1 Hz input

77777 [Comgitemi® | ===

Blank CON %$00000000 ' all segments off
DecPnt CON $10000000 ' decimal point on
IsHigh CON 1
IsLow CON 0

I ===== [Veriglhleg] ===

nTic VAR Bit ' new tic input

oTic VAR Bit ' o0ld tic value

xTic VAR Bit ' change (1 when 0 -> 1)
secs VAR Word ' seconds

time VAR Word ' formatted time

theDig VAR Nib ' current display digit

I [EEPROM Data] -=--=-== === === m e e oo

' .GFEDCBA
L
DigitO DATA %$00111111 ' digit patterns
Digitl DATA %$00000110
Digit2 DATA %$01011011
Digit3 DATA %$01001111
Digit4 DATA %01100110
Digit5s DATA %$01101101
Digite DATA %$01111101

Digit7 DATA %$00000111

Digit8 DATA %$01111111
Digit9 DATA %$01100111
DigSel DATA %1110
DATA $1101
DATA $1011
DATA %0111
L,
Reset:
Digs = %1111
DIRS = SOFFF
L [Program Code]
Main:
DO WHILE (Tic = IsHigh)
GOSUB Show_Clock
LOOP
DO WHILE (Tic = IsLow)
GOSUB Show_Clock
LOOP
secs = secs + 1 // 3600
GOTO Main
Y [Subroutines
Show_Clock:
time = (secs / 60) * 100
time = time + (secs // 60)
Segs = Blank
READ (DigSel + theDig), Digs
READ (DigitO0 + (time DIG theDig)),

Using 7-Segment LED Displays - Page 69

active
active
active
active

digit
digit
digit
digit

W N - o

[rmditilelizatilem |==

IF (theDig = 2
s = Segs | DecPnt

Seg
ENDIF

) THEN

theDig = theDig + 1 // 4
RETURN

Behind the Scenes

all off
make segs & digs outputs

wait during high cycle

wait during low cycle

update current time

get mins, move to 100s

add seconds in 1s/10s
clear display

select digit

move digit pattern to segs

add decimal point

update digit pointer

The first two projects with 7-segment displays used only one digit. This project uses
four. A new problem arises; since the segment (anode) lines of the displays are tied
together, we can only activate one at a time. This is accomplished by putting the

Page 70 - StampWorks

segment pattern on the anodes and then enabling the desired digit (by making its
cathode low).

It would be nice, though, if we could see all four digits at the same time. Well, we
can’'t, but if we switch between them fast enough we can fool our eyes into thinking
that they are.

The human eye has a property known as Persistence of Vision (POV), which causes it
to hold an image briefly. The brighter the image, the longer it holds in our eyes. POV
is what causes us to see a bright spot in our vision after a friend snaps a flash photo.
We can use POV to our advantage by rapidly cycling through each of the four digits,
displaying the proper segments for that digit for a short period. If the cycle is fast
enough, the POV of our eyes will cause the all four digits to appear to be lit at the
same time. This process is called multiplexing.

Multiplexing is the process of sharing data lines; in this case, the segment lines to
the 7-segment displays. If we didn't multiplex, 28 output lines would be required to
control four 7-segment displays. That's 12 more lines than are available on the
BASIC Stamp module. To be honest, multiplexing in PBASIC is not terribly practical,
but it does allow us to gain an understanding of the process so that when we turn to
multiplexers for assistance (see Experiment #31), we are able to get the results we
desire.

The main loop of the program proceeds in three stages:

e Display the current time while the signal generator input is high
e Display the current time while the signal generator input is low
e Update the seconds counter

Note again how the modulus operator (//) is used to keep seconds in the range of 0
to 3599 (the number of seconds in one hour).

The real work in this experiment happens in the subroutine called Show Clock. Its
purpose is to reformat the raw seconds into a time format (MMSS) and then update
the current digit. Since the routine can only show one digit at a time, it must be
called very frequently, otherwise display strobing will occur. As we saw earlier, the
main loop of the program does nothing but call this subroutine while waiting for the
Signal Generator input to change.

Using 7-Segment LED Displays - Page 71

The clock display is created by moving the minutes value (secs / 60) into the
thousands and hundreds columns of the variable time. The remaining seconds
(secs // 60) are added to time, placing them in the tens and ones columns.
Here's how the conversion math works:

Example: 754 seconds

754 /60 =12
12 x 100 = 1200 (time = 1200)
754 /1 60 = 34

1200 + 34 = 1234 (time = 1234; 12 minutes and 34 seconds)

Now that the time display value is ready, the segments are cleared for the next
update. Clearing the current segments value keeps the display sharp. If this isn’t
done, the old segments value will cause “ghosting” in the display. Once the display
is clear the current digit is selected and the segments get updated.

Pay special attention to the DIG operator; it is quite handy. DIG returns the single
digit value from the specified position of a number. For example:

725DIG1=2

Remember, the right-most digit is digit 0. By updating the variable, theDig, we use
it as a column pointer for both the cathode control as well as pulling the digit offset
from time for use in reading the segments.

The PDB display does not have the colon (:) normally found on a digital clock, so
we'll enable the decimal point behind digit 2 (ones digit of hours). When theDig is
not pointing to this digit the decimal point illumination is skipped. The final step is to
update theDig for the next calling of the subroutine.

Take it Further

Update the program to use a 10 Hz input from the Signal Generator and blink the
decimal point on every other transition (see SW21-EX10-Clock-DP_BIink.BS2 for full
listing).

Page 72 - StampWorks

Main:
DO WHILE (Tic = IsHigh) ' wait during high cycle
GOSUB Show_Clock
LOOP
DO WHILE (Tic = IsLow) ' wait during low cycle
GOSUB Show_Clock
LOOP
tenths = tenths + 1 // 36000 ' update time @ 10 Hz
GOTO Main
L [Subroutines J]--------------------“—-"-—“—-~““~“~—~—~—~—~—~—~
Show_Clock:
time = (tenths / 600) * 100 ' get mins, move to 100s
time = time + (tenths // 600 / 10) ' add seconds in 1s/10s
Segs = Blank ' clear display
READ (DigSel + theDig), Digs ' select digit
READ (DigitO + (time DIG theDig)), Segs ' move digit pattern to segs
IF (theDig = 2) THEN
Segs.BIT7 = tenths.BITO ' blink decimal point
ENDIF
theDig = theDig + 1 // 4 ' update digit pointer

RETURN

Using Character LCDs - Page 73

Using Character LCDs

While LEDs and 7-segment displays make great output devices, there will be projects
that require providing more complex information to the user. Of course, nothing
beats the PC video display, but these are large, expensive, and almost always
impractical for microcontroller projects. Character LCD modules, on the other hand,
fit the bill well. These inexpensive modules allow both text and numeric output, use
very few 1/0 lines, and require little effort from the BASIC Stamp. And since the
introduction of the BS2p, character LCD instructions have become part of the PBASIC
2.0 and later 2.5 languages. That said, we can still use the stock BS2 to drive these
versatile displays and the experiments that follow will demonstrate how.

Character LCD modules are available in a wide variety of configurations: one-line,
two-line, and four-line are very common. The number of columns (characters) per
line is also variable, with 16- and 20- character displays being the most common and
popular.

S 2L 0 O

FREALLA

STHMFWORES

O O

The datasheet for the parallel LCD (2 lines x 16 characters) included in the
StampWorks Kit is available for download from www.parallax.com.

The LCD module connects to the PDB by a 14-pin IDC header (X1). The header is
keyed, preventing the connector from being inserted upside-down.

Initialization

The character LCD must be initialized before displaying characters on it. The projects
that follow initialize the LCD in accordance with the specification for the Hitachi
HD44780 controller. The Hitachi controller is the most popular available and many

Page 74 - StampWorks

controllers are compatible with it. When in doubt, be sure to download and examine
the driver documentation for an LCD that does not work properly with these
programs.

Modes of Operation

There are two essential modes of operation with character LCDs: writing a character
on the LCD, and sending a command to the LCD (to clear the screen, for example).
When sending a character, the RS line is high and the data sent is interpreted as a
character to be displayed at the current cursor position. The code sent is usually the
ASCII code for the character to be displayed. Several non-ASCII characters also are
available in the LCD ROM, as well as up to eight user-programmable custom
characters (stored in an area called CGRAM).

Commands are sent to the LCD by taking the RS line low before sending the data.
Several standard commands are available to manage and manipulate the LCD
display.

Clear $01 Clears the LCD and moves cursor to first position of first line
Home $02 Moves cursor to first position of first line

Cursor Left $10 Moves cursor to the left

Cursor Right $14 Moves cursor to the right

Display Left ~ $18 Shifts entire display to the left

Display Right $1C Shifts entire display to the right

Connecting the LCD

The standard parallel LCD has a 14-pin IDC connector at the end of its cable. The
connector is “keyed” so that it is always inserted correctly into the PDB. Simply align
the connector key (small bump) with the slot in X1 and press the connector into the
socket until it is firmly seated.

Using Character LCDs - Page 75

EXPERIMENT #11: BASIC LCD DEMONSTRATION

This experiment demonstrates character LCD interfacing and control fundamentals by
putting the LCD module through its paces.

Look It Up: PBASIC Elements to Know

PULSOUT

HIGHNIB, LOWNIB

A (Exclusive Or operator)
#ERROR

Building the Circuit

(X2)
E

" RW T
P2 [RS¢ | PDB LCD Connector (X1)
Ps [O—o

DB4 2200
PA O——o0—F—W——

DB5. |
P5 O——o———W\

DB6 | |
P6 <O——0———WV

DB7: |

P7 O—6———W\

S

2]

<

Note on connections: On the PDB, X2 splits the LCD data buss between the left and right sides of the
lower portion of the connector.

Page 76 - StampWorks

Be sure to insert the wires for DB4-DB7 into the right side of the connector as shown
below:

X2
—Jld)0|e
—g0|=v
— 0|
——L 11}]| oBo/ DB4
——L 11}]| 081 /D85
— DB2/DB6

]| B3/ DB7

Program: SW21-EX11-LCD_Demo.BS2

' {$sTAMP BS2}
' {$PBASIC 2.5}

' This program demonstrates essential character LCD control.

' The connections for this program conform to the BS2p-family LCDCMD,
' LCDIN, and LCDOUT instructions. Use this program for the BS2, BS2e,
' or BS2sx. There is a separate program for the BS2p, BS2pe, and BS2px.

E PIN 1 ' Enable pin

RW PIN 2 ' Read/Write

RS CON 3 ' Register Select
LcdBus VAR OUTB ' 4-bit LCD data bus
L [Constants J]---------------“---- e -
LcdCls CON $S01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left
LcdDispR CON sic ' shift chars right

LcdDDRam CON $80 ' Display Data RAM control

Using Character LCDs - Page 77

LcdCGRam CON $40 ' Character Generator RAM
LcdLinel CON $80 ' DDRAM address of line 1
LcdLine2 CON SCo ' DDRAM address of line 2

#DEFINE LcdReady = ($STAMP >= BS2P)

L [Variables J--------------m oo oo
char VAR Byte ' character sent to LCD
idx VAR Byte ' loop counter

I [EEPROM Data] -=---=== === === m e oo oo

Msg DATA "The BASIC STAMP!", 0 ' store message

L [Initialization J------------com oo

Reset:
#IF (SSTAMP >= BS2P) #THEN
#ERROR "Please use BS2p version: SW21-EX11-LCD_ Demo.BSP"
H#ENDIF

DIRL = %11111110 ' setup pins for LCD
PAUSE 100 ' let the LCD settle

Lcd Setup:
LcdBus = %0011 ' 8-bit mode
PULSOUT E, 3
PAUSE 5
PULSOUT E, 3
PULSOUT E, 3

LcdBus = %0010 ' 4-bit mode

PULSOUT E, 1

char = %$00001100 ' disp on, no crsr or blink
GOSUB LCD_Cmd

char = %$00000110 ' inc crsr, no disp shift

GOSUB LCD_Cmd

Main:
char = LcdCls ' clear the LCD
GOSUB LCD_Cmd
PAUSE 500
idx = Msg ' get EE address of message

Page 78 - StampWorks

Write Message:

DO
READ idx, char
IF (char = 0) THEN EXIT
GOSUB LCD_Out
idx = idx + 1

LOOP

PAUSE 2000

Cursor_ Demo:
char = LcdHome
GOSUB LCD_Cmd
char = %00001110
GOSUB LCD_Cmd
PAUSE 500

char = LcdCrsrR

FOR idx = 1 TO 15
GOSUB LCD_Cmd
PAUSE 150

NEXT

FOR idx = 14 TO O
char = LcdDDRam + idx
GOSUB LCD_Cmd
PAUSE 150

NEXT

char = $00001101
GOSUB LCD_Cmd
PAUSE 2000

char = $00001100
GOSUB LCD_Cmd

Flash Demo:
FOR idx = 1 TO 10
char = char * %00000100
GOSUR LCD_Cmd
PAUSE 250
NEXT
PAUSE 1000

Shift Demo:

FOR idx = 1 TO 16
char = LcdDispR
GOSUB LCD_Cmd
PAUSE 100

NEXT

PAUSE 1000

get character from EE

if 0, message is complete
write the character

point to next character

wailt 2 seconds

move the cursor home

turn the cursor on

move cursor l-to-r

move cursor r-to-1 by
moving to a specific
column

cursor off, blink on

blink off

flash display

toggle display bit

shift display

Using Character LCDs - Page 79

FOR idx = 1 TO 16 ' shift display back
char = LcdDispL
GOSUB LCD_Cmd

PAUSE 100

NEXT

PAUSE 1000

GOTO Main ' do it all over
L [Subroutines]----------------“- -
LCD_Cmd:

LOW RS ' enter command mode
LCD_Out:

LcdBus = char.HIGHNIB ' output high nibble

PULSOUT E, 3 ' strobe the Enable line

LcdBus = char.LOWNIB ' output low nibble

PULSOUT E, 3

HIGH RS ' return to character mode

RETURN

Behind the Scenes

This is a very simple program which demonstrates the essential functions of a
character LCD. The LCD is initialized using four-bit mode in accordance with the
Hitachi HD44780 controller specifications. This mode is used to minimize the number
of BASIC Stamp 1/0 lines needed to control the LCD. While it is possible to connect
to and control the LCD with eight data lines, this will not cause an appreciable
improvement in program performance and will use four more 1/0 lines; for most
projects it is better to conserve 1/0.

The basics of the initialization are appropriate for most applications:

The display is on

The underline cursor is off

The blinking cursor is off

The cursor is automatically incremented after each write
The display does not shift

Page 80 - StampWorks

Note that this program initializes the LCD for just one line, even though two lines are
physically available on the LCD. See the following experiment for initializing the LCD
for multi-line mode.

With the use of four data bits on the LCD bus, two write cycles are necessary to send
a byte to the LCD. The BASIC Stamp’s HIGHNIB and LOWNIB variable modifiers
make this process exceedingly easy. Each nibble is latched into the LCD by pulsing
the E (enable) line high with PULSOUT.

The main portion of the program starts by clearing the LCD and displaying a
message that has been stored in a DATA statement. This technique of storing
messages in EEPROM is very useful and makes programs easier to update. In this
program, characters are written until a zero is encountered. This method lets us
change the length of the string without worrying about loop control settings. With
the message displayed, the cursor position is returned home (first position of first
line) and turned on (an underline cursor appears).

The cursor is sent back and forth across the LCD using two distinct techniques. The
first uses the cursor-right command. Moving the cursor left is accomplished by
manually positioning the cursor to a specific column position. Manual cursor
positioning is required by many LCD programs for tidy formatting of the information
in the display.

With the cursor back home, it is turned off and the blink attribute is enabled. Blink
causes the current cursor position to alternate between the character and a solid
black box. This can be useful as an attention getter. Another attention-getting
technique is to flash the entire display. This is accomplished by toggling the display
enable bit. The Exclusive OR operator (*) simplifies bit toggling, as any bit XORed
with a 1 will invert:

151 =0
0%1=1

Using the display shift commands, the entire display is shifted off-screen to the right,
then back. What this demonstrates is that the visible display is actually a window
into the LCD’s display memory (called the DDRAM). One method of using the
additional memory is to write messages off-screen and shift the visible display to
them.

Using Character LCDs - Page 81

Write Code like a Pro

Where possible, take advantage of built-in PBASIC instructions instead of manually
coding them. The BS2p-family, for example, has instructions for handling parallel
LCD modules so the code presented in the standard BS2-version of this project would
use program space unnecessarily. By using conditional compilation we are
frequently able to write a program that will run identically on any BS2-type
microcontroller.

Using the following definition from the LCD program:

#DEFINE _LcdReady = ($STAMP >= BS2P)

. we are able to write code that uses the LCD instructions available in the BS2p-
family. Here’s how the LCD Ccmd and LCD Out subroutines could be updated to
reduce program memory requirements when a BS2p-family module is installed:

LCD_Cmd:
#IF _LcdReady #THEN
LCDCMD E, char ' send command to LCD
RETURN ' return to program
#ELSE
LOW RS ' enter command mode
#ENDIF

LCD_Out:
#IF LcdReady #THEN
LCDOUT E, 0, [char]

H#ELSE
LcdBus = char.HIGHNIB ' output high nibble
PULSOUT E, 3 ' strobe the Enable line
LcdBus = char.LOWNIB ' output low nibble
PULSOUT E, 3
HIGH RS ' return to character mode
#ENDIF
RETURN

Note the use of the underscore in the labels LD Cmd and LCD oOut - this prevents
conflict with internal reserved words LCDCMD and LCDOUT while making very clear
the intent of the subroutine.

See SW21-EX11-LCD_Demo-All.BS2 for the complete listing.

Page 82 - StampWorks

EXPERIMENT #12: CREATING CUSTOM LCD CHARACTERS

This program demonstrates the creation of custom LCD characters, animation with
the custom characters, and initializing the LCD for multi-line mode.

Building the Circuit

Use the same circuit as in Experiment #11.

Program: SW21-EX11-LCD_Demo.BS2

' {$sTAMP BS2}
' {$PBASIC 2.5}

' This program demonstrates custom character creation and animation on a
' character LCD.

' The connections for this program conform to the BS2p-family LCDCMD,
' LCDIN, and LCDOUT instructions. Use this program for the BS2, BS2e,
' or BS2sx. There is a separate program for the BS2p, BS2pe, and BS2px.

E PIN 1 ' Enable pin

RW PIN 2 ' Read/Write

RS CON 3 ' Register Select

LcdBus VAR OUTB ' 4-bit LCD data bus

L [Constants J]-----------"-"--"-"--"-"--"-"“““"““~“~““~“~—~—~—~ -
LcdCls CON $01 ' clear the LCD

LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left
LcdDispR CON sic ' shift chars right
LcdDDRam CON $80 ' Display Data RAM control
LcdCGRam CON $40 ' Character Generator RAM
LcdLinel CON $80 ' DDRAM address of line 1
LcdLine2 CON $CO ' DDRAM address of line 2

#DEFINE LcdReady = ($STAMP >= BS2P)

char
newChar
idx1
idx2

Msgl
Msg2

CCo

CE

Cca

Smiley

[Variables]

[EEPROM

VAR
VAR
VAR
VAR

DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Byte
Byte
Byte
Nib

"THE BASIC STAMP "
" IS VERY COOL! ", 3

%01110
%$11111
%$11100
%$11000
%$11100
%$11111
%01110
%00000

%01110
%$11111
%$11111
%$11000
%$11111
%$11111
%01110
%00000

%$01110
%$11111
$11111
%$11111
%$11111
%$11111
%01110
%00000

%$00000
%$01010
%01010
%00000
%$10001
%01110
%00110
%00000

Using Character LCDs - Page 83

' character sent to LCD

' loop counters

' preload EE with messages

' mouth 0

' mouth 1

' mouth 2

' smiley face

Page 84 - StampWorks

Reset:

Initialization]

#IF LcdReady #THEN
#ERROR "Please use BS2p version: SW21-EX12-LCD_ Chars.BSP"

#ENDIF

DIRL =

%$11111110

PAUSE 100

Lcd_Setup:

LcdBus

= %0011

PULSOUT E, 3

PAUSE 5

PULSOUT E, 3
PULSOUT E, 3
LcdBus = %0010
PULSOUT E, 1
char = %00101000
GOSUB LCD_ Cmd
char = %00001100
GOSUB LCD_Cmd
char = %00000110
GOSUB LCD_Cmd

Download Chars:

char = LcdCGRam

GOSUB LCD_Cmd

FOR 1dxl = CCO TO
READ idx1, char
GOSUB LCD_Out

NEXT

Main:

char = LcdCls
GOSUB LCD_Cmd
PAUSE 250

FOR idxl1l = 0 TO 15
READ (Msgl + idx1),

GOSUB LCD_Out
NEXT
PAUSE 1000

Animation:
FOR idxl = 0 TO 15
READ (Msg2 + idx1),

(Smiley + 7)

char

newChar

setup pins for LCD
let the LCD settle

8-bit mode

4-bit mode
multi-line mode
disp on, no crsr or blink

inc crsr, no disp shift

download custom chars
point to CG RAM

prepare to write CG data
build 4 custom chars

get byte from EEPROM

put into LCD CG RAM

clear the LCD

get message from EEPROM
read a character
write it

wait 2 seconds

cover 16 characters
get new char from Msg2

Using Character LCDs - Page 85

FOR idx2 = 0 TO 4
char = LcdLine2 + idx1l
GOSUB LCD_Cmd
LOOKUP idx2, [0, 1, 2, 1, newChar], char
GOSUB LCD_Out

5 characters in cycle
set new DDRAM address
move cursor position
get animation "frame"
write "frame"

PAUSE 100 animation delay
NEXT

NEXT

PAUSE 2000

GOTO Main ' do it all over
L [Subroutines J----------cmmmmm oo
LCD_Cmd:

LOW RS ' enter command mode
LCD_Out:

LcdBus = char.HIGHNIB ' output high nibble

PULSOUT E, 3 ' strobe the Enable line

LcdBus = char.LOWNIB ' output low nibble

PULSOUT E, 3

HIGH RS ' return to character mode

RETURN

Behind the Scenes

In this program, the LCD is initialized for multi-line mode (note the additional lines
after entering 4-bit mode). This will allow both lines of the LCD module to display
information. With the display initialized, custom character definitions are
downloaded to the LCD.

The LCD has room for eight, user-definable customer characters. The data is stored
for these characters in an area called CGRAM and must be downloaded to the LCD
after power-up and initialization (CGRAM is volatile, so custom character definitions
are lost when power is removed from the LCD). Each custom character requires eight
bytes, the first byte being the top line of the character, the last byte being the
bottom line of the character. The eighth byte is usually $00 as this is where the
cursor is positioned when under the character.

Page 86 - StampWorks

The standard LCD font is five bits wide by seven bits tall. You can create custom
characters that are eight bits tall, but as explained before the eighth line is generally
reserved for the underline cursor. Here's an example of a custom character
definition:

... $01110 = $0E
..... $11111 = $1F
... $11100 = $1C
$11000 = $18
$11100 = $1C

EEEEN - o

%$01110 = $OE

Cursor Line

The shape of the character is determined by the ones and zeros in the data bytes. A
1 in a given bit position will light a pixel; zero will extinguish it.

The bit patterns for custom characters are stored in the BASIC Stamp’s EEPROM with
DATA statements. To move the patterns into the LCD the cursor is moved to the
CGRAM then each data byte is written. Since the LCD has been initialized for auto-
incrementing, there is no need to address each data byte individually. Before the
characters can be used, the display must be returned to “normal” mode by moving
the cursor back to the DDRAM area. The usual method is to clear the display or
home the cursor.

Interestingly, the LCD retrieves the bit patterns from memory while refreshing the
display. In advanced applications, the CGRAM memory can be updated while the
program is running to create unusual display effects.

The heart of this program is the animation loop. This code grabs a character from
the second message, then, for each character in that message, displays the
animation sequence at the desired character location on the second line of the LCD.
A LOOKUP table is used to cycle the custom characters for the animation sequence.
At the end of the sequence, the new character is revealed.

Using Character LCDs - Page 87

Write Code like a Pro

Note the use of binary formatted numbers in the DATA statements for this program.
While the beginning programmer may consider this technique overly verbose, the
professional knows that the small amount of up-front work to use this format saves a
lot of time later when editing or redefining characters. The purpose of the various
numeric formats supported by the BASIC Stamp IDE is to assist the programmer —
once downloaded to the BASIC Stamp the values are all stored in a binary format.

Take it Further

Create your own custom character sequence. Update the initialization and animation
code to accommodate your custom character set.

Page 88 - StampWorks

EXPERIMENT #13: READING THE LCD RAM

This program demonstrates the use of the LCD’s CGRAM space as external memory.

Look It Up: PBASIC Elements to Know

e INS, INL, INH, INA - IND

Building the Circuit
Use the same circuit as in Experiment #11.

Program: SW21-EX13-LCD_Read.BSP

' {ssTAMP BS2}
' {$PBASIC 2.5}

This program demonstrates how to read data from the LCD's display RAM
(DDRAM) or character RAM (CGRAM) .

The connections for this program conform to the BS2p-family LCDCMD,

LCDIN, and LCDOUT instructions. Use this program for the BS2, BS2e,
or BS2sx. There is a separate program for the BS2p, BS2pe, and BS2px.

77777 [I/O0 Definitions J----------cccoommmmoo oo

E PIN 1 ' Enable pin
RW PIN 2 ' Read/Write
RS CON 3 ' Register Select
LcdDirs VAR DIRB ' bus DDR
LcdBusOut VAR OUTB ' 4-bit LCD data bus
LcdBusIn VAR INB
L [Constants J]---------------“---- e -
LcdCls CON $S01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left

1

LcdDispR CON sic shift chars right

LcdDDRam CON
LcdCGRam CON
LcdLinel CON
LcdLine2 CON

#DEFINE _LcdReady =

L [Variables
char VAR
idx VAR
rndVal VAR
addr VAR
tout VAR
tIn VAR
temp VAR
width VAR
L [Initialization]
Reset:

#IF _LcdReady #THEN

$80
$40
$80
$CO

(SSTAMP >= BS2P)

Byte
Byte
Word
Byte
Byte
Byte
Word
Nib

Using Character LCDs - Page 89

Display Data RAM control
Character Generator RAM
DDRAM address of line 1
DDRAM address of line 2

character sent to LCD
loop counter

random value

address to write/read
test value - out to LCD
test value - in from LCD
use for formatting

width of value to display

#ERROR "Please use BS2p version: SW21-EX13-LCD_Read.BSP"

H#ENDIF

DIRL = %11111110
PAUSE 100

Lcd_Setup:
LcdBusOut = %0011
PULSOUT E, 3
PAUSE 5
PULSOUT E, 3
PULSOUT E, 3
LcdBusOut = %0010
PULSOUT E, 1
char = %00101000
GOSUB LCD_Cmd
char = %00001100
GOSUB LCD_Cmd
char = %00000110
GOSUB LCD_Cmd

Display:
char = LcdHome
GOSUB LCD_Cmd
PAUSE 2
FOR i1dx = 0 TO 15

setup pins for LCD
let the LCD settle

8-bit mode

4-bit mode
multi-line mode
disp on, no crsr or blink

inc crsr, no disp shift

Page 90 - StampWorks

LOOKUP idx, ["ADDR=?? OUT:???"],

GOSUB LCD_Out
NEXT

char = LcdLine2
GOSUB LCD_Cmd
PAUSE 2

FOR idx = 0 TO 15

LOOKUP idx, [" IN:???"],

GOSUB LCD Out
NEXT

Main:
RANDOM rndVal
addr = rndval.LOWBYTE & S$3F
tOut = rndvVal.HIGHBYTE

char = LcdCGRam + addr
GOSUB LCD_Cmd

char = toOut

GOSUB LCD_Out

PAUSE 100

char = LcdCGRam + addr
GOSUB LCD_Cmd

GOSUB LCD_In

tIn = char

' display results

char = LcdLinel + 5
GOSUB LCD_Cmd

temp = addr

width = 2

GOSUB Put_Val

char = LcdLinel + 13
GOSUB LCD_cmd

temp = tOut

width = 3

GOSUB Put Val

char = LcdLine2 + 13
GOSUB LCD_Cmd

temp = tIn

width = 3

GOSUB Put_Val

PAUSE 1000

----- [Program Code]-----------------

generate random number
create address (0 to 63)
create test value

set CGRAM pointer

move the value to CGRAM

reset CGRAM pointer

read value from LCD

show address @ L1/C5

show output @ L1/C13

show output @ L2/C13

Using Character LCDs - Page 91

GOTO Main ' do it again
e [Subroutines J-----------cooooo oo
LCD_Cmd:

LOW RS ' enter command mode
LCD Out:

LcdBusOut = char.HIGHNIB ' output high nibble

PULSOUT E, 3 ' strobe the Enable line

LcdBusOut = char.LOWNIB ' output low nibble

PULSOUT E, 3

HIGH RS ' return to character mode

RETURN

LCD_In:

HIGH RS ' data command

HIGH RW ' read

LcdDirs = %0000 ' make data lines inputs

HIGH E

char .HIGHNIB = LcdBusIn ' get high nibble

LOW E

HIGH E

char.LOWNIB = LcdBusIn ' get low nibble

LOW E

LcdDirs = %1111 ' make buss lines outputs

LOW RW ' return to write mode

RETURN

Put_Val:

FOR idx = (width - 1) TO 0 ' display digits l-to-r
char = (temp DIG idx) + "O" ' convert digit to ASCII
GOSUB LCD_Out ' write to LCD

NEXT

RETURN

Behind the Scenes

This program demonstrates the versatility of the BASIC Stamp’s 1/0 lines and their
ability to be reconfigured mid-program. Writing to the LCD was covered in the last
two experiments. To read data back, the BASIC Stamp’s 1/0 lines that serve as the
LCD bus must be reconfigured as inputs. This is no problem for the BASIC Stamp.

Page 92 - StampWorks

Aside from the 1I/0 reconfiguration, reading from the LCD requires the use of an
additional control line: RW. In most programs this line can be held low to allow
writing to the LCD. For reading from the LCD RAM the RW line is made high.

Using the RANDOM function this program generates an address that fits within the
CGRAM, as well a data byte to write to the LCD. The address is kept in the range of
0 to 63 by masking out the highest bits of the LOWBYTE; the HIGHBYTE is used as
the data to be written to the LCD.

The LCD’s CGRAM is normally used for custom character maps. For programs that
do not require custom characters, this area (up to 64 bytes) can be used as a
storage space by the BASIC Stamp. In programs that require fewer than eight
custom characters the remaining bytes of CGRAM can be used as off-board memory
(subtract eight bytes from the CGRAM for each custom character definition).

Reading data from the LCD is identical to writing: the address is set and the data is
retrieved. For this to take place, the LCD data lines must be reconfigured as inputs.
Pulsing the E (enable) line makes the data (one nibble at a time) available for the
BASIC Stamp. Once again, HIGHNIB and LOWNIB are used, this time to build a
single byte from the two nibbles returned during the read operation.

When the retrieved data is ready, the address, output data and input data are
written to the LCD for examination. A short subroutine, Put_Val, handles writing
numerical values to the LCD. To use this routine, move the cursor to the desired
location, put the value to be displayed in temp, the number of characters to display
in width, and then call Put_Val. The subroutine uses the DIG operator to extract a
digit from temp and adds 48 (the ASCII code for “0”) to convert the digit value to a
character so that it can be displayed on the LCD.

Moving Forward - Page 93

Moving Forward

The first sections of this book dealt specifically with output devices, because the
choice of output is often critical to the success of a project. By now, you should be
very comfortable with LEDs, 7-Segment displays, and even character LCD modules.
From this point forward we will work through a variety of experiments; some are
simple, others are somewhat complex, all of them will round your education as a
BASIC Stamp programmer and help build the confidence you need to develop your
own BASIC Stamp-controlled applications.

Remember, the key to success here is to complete each experiment and to take on
any challenge that is presented. Then, go further by challenging yourself. Each time
you modify a program you will learn something. It's okay if your experiments don't
work as expected the first time you run them, because you will still be learning. Be
patient and push yourself to learn a little more each day. Very soon you will find
yourself being considered an expert BASIC Stamp programmer.

Page 94 - StampWorks

EXPERIMENT #14: SCANNING AND DEBOUNCING MULTIPLE
INPUTS

This experiment will teach you how to debounce multiple BASIC Stamp inputs. With
modification, any number of inputs, from two to 16, can be debounced using this
method.

Look It Up: PBASIC Elements to Know

e ~ (Invert operator)

e DEBUG

e HOME (used with DEBUG)

e IBIN (used with DEBUG)

e LOWBIT () (variable modifier)

Building the Circuit

P0 CI——o—Wv—+

Vdd
P3 <3 o—\W\ -]%
P2 1 j?__NNN 1
Pt CH—o0—W\——9
b
L L

<
w
[
<
)
w
<
w
w
<
w
w

Moving Forward - Page 95

Program: SW21-EX14-Debounce.BS2

' {$sTAMP BS2}
' {$PBASIC 2.5}

' This program demonstrates the simultaneous debouncing of multiple inputs.
' The input subroutine is easily adjusted to handle any number of inputs.

BtnBus VAR INA ' four inputs, pins 0 - 3

I ===== [Veriglhleg | ===
btns VAR Nib ' debounced inputs

idx VAR Nib ' loop counter

Main:
DO
GOSUB Get_ Buttons ' get debounced inputs
DEBUG HOME,
"Inputs = ", IBIN4 btns ' display in binary mode
PAUSE 50
LOOP
I ===== [Sulseutingg |===

Get Buttons:

btns = %1111 ' enable all four inputs
FOR idx = 1 TO 5

btns = btns & ~BtnBus ' test inputs

PAUSE 5 ' delay between tests
NEXT
RETURN

Behind the Scenes

When debouncing only one input, the BASIC Stamp’s BUTTON instruction works
perfectly well and even adds a couple of useful features (like auto-repeat). To
debounce two or more inputs, however, we need to create a bit of code. The

Page 96 - StampWorks

workhorse of this experiment is the subroutine Get Buttons. As presented, it will
accommodate four normally-open, active-low inputs but it can easily be modified for
any number of inputs from two to 16.

The purpose of Get Buttons is to ensure that the inputs stay pressed for at least
25 milliseconds with no contact “bouncing.” Debounced inputs will be returned in the
variable, bins, with a valid input represented by a “1” in the respective button
position.

The Get Buttons routine starts by assuming that all button inputs will be valid, so
all the bits of btns variable are set to one. Then, using a FOR-NEXT loop, the inputs
are scanned and compared to the previous state. Since the inputs are active-low
(zero when pressed), the Invert operator (~) flips them. The And operator (&) is
used to update the current state. For a button to be valid, it must remain pressed
through the entire FOR-NEXT loop.

Here's how the debouncing technique works: When a button is pressed, the input to
the BASIC Stamp will be zero. The Invert operator will flip zero to one. One “Anded”
with one is still one, so that button remains valid. If the button is not pressed, the
raw input to the BASIC Stamp will be one (because of the 10K pull-up to Vdd). One
is inverted to zero. Zero “Anded” with any number is zero and will cause the button
to remain invalid through the entire debounce loop.

The debounced button inputs are displayed in a DEBUG window with the IBIN4
modifier so that the value (state, pressed = “1”) of each button is clearly displayed.

Write Code like a Pro

Many programs will require the ability to “single shot” a button input, that is, to
activate some event or process only after the change-of-state of a button. By
keeping track of the last scan value we can report to the program which buttons
changed between the current scan and the last.

Moving Forward - Page 97

Here’s the modified subroutine:

Get_Buttons:

nBtns = %1111 ' enable all four inputs
FOR idx = 1 TO 5

nBtns = nBtns & ~BtnBus ' test new inputs

PAUSE 5 ' delay between tests
NEXT
xBtns = nBtns * oBtns & nBtns ' look for 0 -> 1 changes
oBtns = nBtns ' save this scan
RETURN

The real work is done by this line of code:

xBtns = nBtns * oBtns & nBtns ' look for 0 -> 1 changes

The current button state (nBtns) is compared with the previous scan value (oBtns)
using the Exclusive OR (/) operator. This will cause a bit to be ‘1’ when there is a
difference between the previous scan and the current. This [comparison] value is
then ANDed with nBtns which holds ‘1’ for each pressed button. The result is that
xBtns will have a ‘1’ for each button that was ‘0’ on the last scan and is ‘1’ on this
scan.

Note that if the button remains pressed and Get Buttons is called again, the
respective bit of xBtns will change from ‘1’ to ‘0’ since there was no change of
button state.

See listing SW21-EX14-Debounce-Adv.BS2 for a full demonstration.

Take it Further

Modify the program to scan, debounce, and display eight buttons (Hint: Use INL or
INH).

Page 98 - StampWorks

EXPERIMENT #15: COUNTING EVENTS

This experiment demonstrates an events-based program delay.

Look It Up: PBASIC Elements to Know

e CLS, CR, CRSRXY (used with DEBUG)

Building the Circuit

P15 C3—o0

PULSE GENERATOR

Program: SW21-EX15-Event_Count.BS2

' {ssTAMP BS2}
' {$PBASIC 2.5}

' Counts extenal events by wait for a low-to-high transition on the event

' input pin.

EventIn PIN

I coc=s [Variables

nScan VAR
oScan VAR
xScan VAR
eCount VAR
target VAR
| [Initialization]

15

Bit
Bit
Bit

Word
Word

' new scan (changed)
' old scan of input
' scan change

' event count
' target count value

Moving Forward - Page 99

DEBUG CLS,
"Started...", CR

Main:
target = 25 ' set target value
GOSUB Wait For Count ' wait for 25 pulses

DEBUG "Count complete."

END

I ===== [Sulsreutingg ||===

Wait_For Count:

DO
nScan = EventIn ' capture input
xScan = nScan © oScan & nScan ' look for 0 -> 1 change
oScan = nScan ' save this scan

IF (xScan = 1) THEN
eCount = eCount + 1
DEBUG CRSRXY, 0, 1,
"Count = ", DEC eCount, CR

' add new event

ENDIF
LOOP UNTIL (eCount = target)
RETURN

Behind the Scenes

The purpose of the Wait For Count subroutine is to cause the program to wait
for a specified number of events. In an industrial setting, for example a packaging
system, we might need to run a conveyor belt until 100 boxes pass a sensor.

As you can see we've built upon the “pro” technique explored in the previous
chapter. At the top of the loop the input state is captured in nScan, and then
compared to the previous state (oScan) to detect a change (saved in xScan).
When the input has changed from ‘0’ to ‘1’ between scans the event count is
updated and displayed. The reason for capturing the input before the comparison is
to prevent the possibility of being affected by an input state change while processing
the comparison line.

Note that displaying the current event count in the middle of the Wait For Count
subroutine does put a limit on the rate of change the subroutine can accommodate.

Page 100 - StampWorks

This is due to DEBUG requiring several milliseconds to send its output to the Debug
Terminal window. Removing the DEBUG output (simple using conditional
compilation) will increase the events input rate that can be detected.

Note, too, that the subroutine expects a clean input. A noisy input could cause
spurious counts, leading to early termination of the subroutine. This is easily fixed by
adapting the Get Buttons subroutine from the last experiment.

Scan_Input: ' use with "noisy" inputs
nScan = 1
FOR idx = 1 TO 5
nScan = nScan & EventIn

PAUSE 5
NEXT
xScan = nScan * oScan & nScan ' look for 0 -> 1 change
oScan = nScan ' save this scan

RETURN

Moving Forward - Page 101

EXPERIMENT #16: FREQUENCY MEASUREMENT

This experiment demonstrates how the BASIC Stamp can measure the frequency of
an input signal by using the COUNT function.

Look It Up: PBASIC Elements to Know

e COUNT
e H#SELECT-#CASE-#ENDSELECT

Building the Circuit

vdd Vdd
L2200
4 8 :

10 kO

3
P15 {J— 555

LI
V;s

V_ss

Note: The 1 kQ resistor is marked: brown-black-red.

Page 102 - StampWorks

Program: SW21-EX16-Freq_Measure.BS2

' {$sTAMP BS2}
' {$PBASIC 2.5}

This program counts the number of events in one second and calculates
frequency from it. Since frequency in Hertz is cycles per second, the
number of cycles counted is the input frequency.

e [I/O0 Definitions J-----------ccoommmmoo oo

FreqIn PIN 15 ' frequency input pin

I ===== [Comgitemits | ===
OneSec CON 1000 ' capture window = 1 sec

I o===== [Veumedlglolleg | ===
cycles VAR Word ' counted cycles

Main:
DO
COUNT FregIn, OneSec, cycles ' count for 1 second
DEBUG HOME,
"Frequency: ", DEC cycles, " Hz" ' display
LOOP

Behind the Scenes

In the previous experiment, several lines of code were used to count pulses on an
input pin. That method works when counting to a specific number. Other programs
will want to count the number of pulses that arrive during a specified time period.
The BASIC Stamp’s COUNT function is designed for this purpose.

The frequency of an oscillating signal is defined as the number of cycles per second
and is expressed in Hertz. The BASIC Stamp’s COUNT function monitors the specified

Moving Forward - Page 103

pin for a given amount of time (the Duration parameter). To create a simple
frequency meter, the specified time window is set to 1000 milliseconds (one second).

Note the comparison between the BASIC Stamp output and the input frequency
measured with a Parallax USB Oscilloscope on the next page:

Page 104 - StampWorks

When using the COUNT function with a Duration of one second, the frequency

measurement is very accurate up to the specified input of the BASIC Stamp module
(input frequency varies from module-to-module).

Write Code like a Pro

COUNT is one of several BASIC Stamp functions that behave differently based on the
module being used. The BS2, for example, expresses the Duration parameter in
units of one millisecond, while the BS2p expressed this parameter in units of 0.287
milliseconds.

Moving Forward - Page 105

This is another situation where conditional compilation directives are particularly
useful. To accommodate COUNT using any BASIC Stamp 2 module, we can add this
block to our program:

#SELECT S$STAMP
#CASE BS2, BS2E

DurAdj CON $100 ' Duration / 1
#CASE BS2SX

DurAdj CON $280 ' Duration / 0.400
#CASE BS2P, BS2PX

DurAdj CON $37B ' Duration / 0.287
#CASE BS2PE

DurAdj CON $163 ' Duration / 0.720

#ENDSELECT

Now that we have a multiplier for the Duration parameter, the COUNT code is
modified like this:

COUNT FreqgIn, OneSec */ DurAdj, cycles ' count for for 1 second

... and the program will behave in the same manner using an BS2-family module.

Take it Further

Improve the responsiveness (make it update more frequently) of this program by
changing the COUNT period. What other adjustment has to be made? How does this
change affect the ability to measure very low frequency signals?

Page 106 - StampWorks

EXPERIMENT #17: ADVANCED FREQUENCY MEASUREMENT

This experiment demonstrates how the BASIC Stamp can measure the frequency of
an input signal by using the PULSIN function.

Look It Up: PBASIC Elements to Know

e PULSIN
e DEC (used with DEBUG)
e CLREOL (used with DEBUG)

Building the Circuit

Use the same circuit as Experiment #16

Program: SW21-EX17-Freq_Measure-Adv.BS2

' {ssTAMP BS2}
' {$PBASIC 2.5}

This program monitors and displays the frequency of a signal on 15. The
period of the input cycle is measured in two halves: low, then high.
Frequency is calculated using the formula F = 1 / Period.

FreqgIn PIN 15 ' frequency input pin
I ===== [CongitamEs | =======================================s===============
Scale CON $200 ' 2.0 us per unit
L [Variables J--------------mmm oo oo
pHigh VAR Word ' high pulse timing
pLow VAR Word ' low pulse timing
period VAR Word ' cycle time (high + low)
1

freq VAR Word frequency

Moving Forward - Page 107

e [Initialization J------------cocommm oo
Reset:
DEBUG CLS, ' setup report output
"Period. (usS)... ", CR,
"Freq (Hz)..... "
L [Program Code J------coommmmmmm o oo oo oo
Main:
DO
PULSIN FreqgIn, 0, pLow get high side of input

period = (pLow + pHigh) */ Scale scale to uSecs

|l

PULSIN FreqgIn, 1, pHigh ' get low side of input
1

freq = 62500 / period * 16 ' calculate frequency

DEBUG CRSRXY, 15, 0, DEC period, CLREOL, ' display values
CRSRXY, 15, 1, DEC freq, CLREOL
LOOP

Behind the Scenes

In the last experiment, we learned that the frequency of a signal is defined as the
number of cycles per second. We created a simple frequency meter by counting the
number of pulses (cycles) in one second. This method works well, especially for low-
frequency signals. There will be times, however, when project requirements will
dictate a quicker response time for frequency measurement.

The frequency of a signal can be calculated from its period, or the time for one
complete cycle as shown in the illustration below:

|<— Period —>|

By measuring the period of an incoming signal, its frequency can be calculated with
the equation (where the period is expressed in seconds):

Frequency = 1 / Period

Page 108 - StampWorks

The BASIC Stamp’s PULSIN function is designed to measure the width of an
incoming pulse. By using PULSIN to measure the high and low portions of an
incoming signal, its period and frequency can be calculated. The result of PULSIN
(on the BS2) is expressed in units of two microseconds. First the PULSIN values
are converted to ps by the following formula:

period = (pLow + pHigh) */ Scale

Scale refers to the units of the PULSIN command. Thus, the formula for calculating
frequency becomes:

Frequency = 1,000,000 / period (us)

This creates a problem for BASIC Stamp math though, as values are limited to 16
bits (maximum value is 65,535). To fix the formula, we can divide 1,000,000 by 16
(62,500) and rewrite the formula like this:

Frequency = 62,500 / period (us) * 16

This formula works with any BS2 module — after the raw measurements from
PULSIN have been converted to microseconds. This is the purpose of the Scale
constant in the program: it converts the raw input from PULSIN to microseconds for
the generalized frequency calculations.

Run the program and adjust the 10 kQ potentiometer. Notice that the Debug
Terminal window is updated without delay and that there is no waiting as when
using COUNT to determine frequency. This method of measuring a frequency works
better at higher frequencies (above 100 Hz).

Moving Forward - Page 109

EXPERIMENT #18: A LIGHT CONTROLLED THEREMIN

This experiment demonstrates FREQOUT by creating a light-controlled Theremin (the
first electronic musical instrument ever produced). While the output from our BASIC
Stamp-based Theremin is not quite as haunting as the real thing, it is a fun project
and demonstrates the ability to use a non-standard input (light level) for program
control.

Look It Up: PBASIC Elements to Know

e FREQOUT

Building the Circuit

220 Q
P1 PO

A~ Y

I Photoresistor Audio Amplifer
V;s

0.1 uF

Vss

Note: The 220 Q resistor is marked: red-red-brown.

Program: SW21-EX18-Theremin.BS2

' {ssTAMP BS2}
' {$PBASIC 2.5}

1
1

1

This program uses RCTIME with a photocell to create a light-controlled
' Theremin.

Speaker CON 0 ' speaker output
PitchCtrl CON 1 ' pitch control input

Page 110 - StampWorks

I ===== [Comgitemits | ===
TAd]j CON $100 ' time adjust factor

FAd] CON $100 ' frequency adjust factor
Threshold CON 200 ' cutoff frequency to play
NoteTm CON 40 ' note timing

I ===== [Veriglsleg | ===
tone VAR Word ' frequency output

Main:

DO
HIGH PitchCtrl ' discharge cap
PAUSE 1 ' for 1 ms
RCTIME PitchCtrl, 1, tone ' read the light sensor
tone = tone */ FAdj ' scale input
IF (tone > Threshold) THEN ' play?

FREQOUT Speaker, NoteTm */ TAdj, tone

ENDIF

LOOP

Behind the Scenes

A Theremin is an interesting musical device used to create those weird, haunting
sounds often heard in old horror movies. This version uses the light falling onto a
photocell to create the output tone.

Since the photocell is a resistive device, RCTIME can be used to read its value.
FREQOUT is used to play the note. The constant, Threshold, is used to control the
cutoff point of the Theremin. When the photocell reading falls below this value, no
sound is played. This value should be adjusted to the point where the Theremin
stops playing when the photocell is not covered in ambient light.

Behind the Scenes...Going Deeper

You may wonder how the BASIC Stamp is able to create a musical note using a pure
digital output. The truth is that it gets a little help from the outside world. At the

Moving Forward - Page 111

front end of the PDB’s audio amplifier is a low-pass filter circuit that takes the pure
digital output (a special type of PWM output) from FREQOUT and smoothes it into a
nice sine wave that produces a clean musical note.

To see this in action, build the following circuit:

PO

0.1 uF 0.01 uF 10 kQ

V_ss V;s

Using an oscilloscope, monitor the points marked “A” and “B” in the circuit while
running the following short program:

Vss

Main:
FREQOUT Speaker, 1000, 440
GOTO Main

On a stock BS2 this will generate a 440 Hz tone for one second. Note the digital
output at point “A” and the sine-wave produced after the filter circuit at point “B”
(the 10 kQ resistor represents the audio amplifier input).

Page 112 - StampWorks

EXPERIMENT #19: SOUND EFFECTS (SFX)

This experiment uses DTMFOUT and FREQOUT to mimic telephone system sounds,
create sound effects, and even play a simple song.

Look It Up: PBASIC Elements to Know

e DTMFOUT
e INPUT

Building the Circuit

PO [O—¢

Audio Amplifer

Program: SW21-EX19-Sound_FX.BS2

' {$sTAMP BS2}
' {$PBASIC 2.5}

Speaker PIN 0 ' speaker on pin 0

Y [Constants J------mmmmm oo oo oo
R CON 0 ' rest

Cc CON 33 ' ideal is 32.703

Cs CON 35 ' ideal is 34.648

D CON 37 ' ideal is 36.708

Ds CON 39 ' ideal is 38.891

E CON 41 ' ideal is 41.203

F CON 44 ' ideal is 43.654

T

Fs CON 46 ideal is 46.249

Moving Forward - Page 113

G CON 49 ' ideal is 48.999
Gs CON 52 ' ideal is 51.913
A CON 55 ' ideal is 55.000
As CON 58 ' ideal is 58.270
B CON 62 ' ideal is 61.735
N1 CON 500 ' whole note duration
N2 CON N1/2 ' half note
N3 CON N1/3 ' third note
N4 CON N1/4 ' quarter note
N8 CON N1/8 ' eighth note
TAd]J CON $100 ' x 1.0 (time adjust)
FAd] CON $100 ' x 1.0 (freqg adjust)
L [Variables J------commmmm o m i m o m e
idx VAR Word ' loop counter
notel VAR Word ' first tone for FREQOUT
note2 VAR Word ' second tone for FREQOUT
onTime VAR Word ' duration for FREQOUT
offTime VAR Word
octl VAR Nib ' octave for fregl (1 - 8)
oct2 VAR Nib ' octave for freg2 (1 - 8)
eePntr VAR Byte ' EEPROM pointer
digit VAR Byte ' DTMF digit
clickDly VAR Word ' delay betweens "clicks"
e==== [EEPROM Data] ------------ oo mmmm o oo o m e -
Phonel DATA "123-555-1212", 0 ' stored telephone numbers
Phone2 DATA "916-624-8333", 0
L [Program Code J--------------m oo oo oo oo
Main:

DEBUG CLS,

"BASIC Stamp Sound FX Demo", CR, CR

Dial Tone:

DEBUG "Dial tone", CR

onTime = 35 */ TAdj

notel = 35 */ FAdj

FREQOUT Speaker, onTime, notel U Ueldelk

PAUSE 100
onTime = 2000 */ TAdj
notel = 350 */ FAdjJ

Page 114 - StampWorks

note2 = 440 */ FAdj

FREQOUT Speaker, onTime, notel, note2
Dial_ Phonel:

DEBUG "Dialing number: "

eePntr = Phonel

GOSUB Dial_Phone

Phone_Busy:

PAUSE 1000

DEBUG CR, " - busy...",

onTime = 400 */ TAdj

notel = 480 */ FAdjJ

note2 = 620 */ FAdj

FOR idx = 1 TO 8
FREQOUT Speaker,
PAUSE 620

NEXT

onTime = 35 */ TAdj

notel = 35 */ FAdj

FREQOUT Speaker, onTime,

CR

onTime, notel, note2

notel

Dial Phone2:
DEBUG "Calling Parallax: "
eePntr = Phone2
GOSUB Dial_ Phone

Phone Rings:
PAUSE 1000
DEBUG CR,
onTime =

" - ringing"
2000 */ TAQ]
notel = 440 */ FAdj
note2 = 480 */ FAdj
FREQOUT Speaker, onTime,
PAUSE 4000
FREQOUT Speaker,
PAUSE 2000

notel, note2

onTime, notel, note2

Camptown_Song:
DEBUG CR, "Play a Camptown
FOR idx = 0 TO 13
LOOKUP idx, [G,
R,
4,
4,
[N2,
N2,
GOSUB Play 1 Note
NEXT

song", CR
, E , , G, E,
, D, , D,
4 4
4 4

i

LOOKUP idx, [. 4,
, 41,
N2,

N1,

1 1 1

BOd Q@
L 0]
L e

;
N2,
N2,

;
N2,
N2,

;
N2,
N2,

LOOKUP idx, N2,

N1,

Howler:

' combine 350 Hz & 440 Hz
' dial phone from EE

' initialize eePntr pointer

' combine 480 Hz and 620 Hz

1 "CliCk"

' combine 440 Hz and 480 Hz

' combine 440 Hz and 480 Hz

notel
octl

onTime

Moving Forward - Page 115

DEBUG "Howler -- watch out!!!", CR
FOR idx = 1 TO 4
onTime = 1000 */ TAdj
notel = 1400 */ FAdj
note2 = 2060 */ FAdj
FREQOUT Speaker, onTime, notel, note2 ' combine 1400 Hz and 2060 Hz
onTime = 1000 */ TAdj
notel = 2450 */ FAdj
note2 = 2600 */ FAdj
FREQOUT Speaker, onTime, notel, note2 ' combine 2450 Hz and 2600 Hz
NEXT

Roulette Wheel:
DEBUG "Roulette Wheel", CR

onTime = 5 */ TAdj ' onTime for "click"
notel = 35 */ FAdj ' frequency for "click"
clickDly = 250 ' delay between clicks
FOR idx = 1 TO 8 ' spin up wheel

FREQOUT Speaker, onTime, notel ' click

PAUSE clickDly

clickDly = clickDly */ $O0OBF ' accelerate (speed * 0.75)
NEXT
FOR idx = 1 TO 10 ' spin stable

FREQOUT Speaker, onTime, notel
PAUSE clickDly
NEXT
FOR idx = 1 TO 20 ' slow down
FREQOUT Speaker, onTime, notel
PAUSE clickDly

clickDly = clickDly */ $010C ' decelerate (speed * 1.05)
NEXT
FOR idx = 1 TO 30 ' slow down and stop

FREQOUT Speaker, onTime, notel
PAUSE clickDly

clickDly = clickDly */ $0119 ' decelerate (speed * 1.10)
NEXT
Computer_ Beeps: ' looks great with randmom
LEDs
DEBUG "1950's Sci-Fi Computer", CR
FOR idx = 1 TO 50 ' run about 5 seconds
onTime = 50 */ TAdj
RANDOM notel ' create random note
notel = (notel // 2500) */ FAdj ' don't let note go to high
FREQOUT Speaker, onTime, notel ' play it
PAUSE 100 ' short pause between notes
NEXT

Space_Transporter:
DEBUG "Space Transporter", CR
onTime = 10 */ TAdj

Page 116 - StampWorks

FOR idx = 5 TO 5000 STEP 5 ' frequency sweep up
notel = idx */ FAdj
FREQOUT Speaker, onTime, notel, notel */ 323

NEXT

FOR i1dx = 5000 TO 5 STEP 50 ' frequency sweep down
notel = idx */ FAdj
FREQOUT Speaker, onTime, notel, notel */ 323

NEXT

DEBUG CR, "Sound demo complete."
INPUT Speaker

END

I o===== [Suloreuitimeg [|===

Dial Phone:

DO
READ eePntr, digit ' read a digit
IF (digit = 0) THEN EXIT ' when 0, number is done
DEBUG digit ' display digit
IF (digit >= "O" AND digit <- "9") THEN ' don't digits
onTime = 150 */ TAdj
offTime = 75 */ TAdj
DTMFOUT Speaker, onTime, offTime, [digit - 48]
ENDIF
eePntr = eePntr + 1 ' update eePntr pointer
LOOP
RETURN

Play 1 Note:
notel = notel << (octl - 1) ' note + octave
onTime = onTime */ TAdj
notel = notel */ FAdj
FREQOUT Speaker, onTime, notel ' play it
RETURN

Play 2 Notes:
notel = notel << (octl - 1) ' note + octave
note2 = note2 << (oct2 - 1 note + octave
onTime = onTime */ TAdjJ
notel = notel */ FAdj
note2 = note2 */ FAdj
FREQOUT Speaker, onTime, notel, note2 ' play both
RETURN

Moving Forward - Page 117

Behind the Scenes

With a bit of programming creativity, the BASIC Stamp microcontroller is able to
create and mimic some very interesting sound effects, particularly those used in
telephone