LC87F1HC4B

CMOS LSI

8-bit Microcontroller with USB-host Controller 128K-byte FROM / 12288-byte RAM / 48-pin

ON Semiconductor ${ }^{\text {® }}$

www.onsemi.com

Overview

The LC87F1HC4B is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 83.3 ns , integrates on a single chip a number of hardware features such as 128 K -byte flash ROM (onboard programmable), 12288-byte RAM, an on-chip debugger, a sophisticated 16-bit timer/counter (may be divided into 8 -bit timers), a 16-bit timer (may be divided into 8 -bit timers or PWMs), four 8 -bit timers with a prescaler, a base timer serving as a time-of-day clock, 3 channels of synchronous SIO interface with automatic data transfer capabilities, an asynchronous/synchronous SIO interface, a UART interface (full duplex), a full-speed USB interface (host control function), an 8-bit 12-channel AD converter, 2 channels of 12 -bit PWM, a system clock frequency divider, an infrared remote control receiver circuit, and a 40 -source 10 -vector interrupt feature.

SPQFP48 7x7 / SQFP48

Features

■Flash ROM

- 131072×8 bits
- Capable of on-board programming with a wide range of supply voltages : 3.0 to 5.5V
- Block-erasable in 128 byte units
- Writes data in 2-byte units

■RAM

- 12288×9 bits

■Package Form

- SQFP48 : Pb-Free type

■ Bus Cycle Time

- 83.3ns (When CF=12MHz)

Note : The bus cycle time here refers to the ROM read speed.

* This product is licensed from Silicon Storage Technology, Inc. (USA).

ORDERING INFORMATION

See detailed ordering and shipping information on page 28 of this data sheet.

■Minimum Instruction Cycle Time (tCYC)

- 250ns (When CF=12MHz)

■ Ports

- I/O ports

Ports whose I/O direction can be designated in 1-bit units 28 (P10 to P17, P20 to P27, P30 to P34, P70 to P73, PWM0, PWM1, XT2)
Ports whose I/O direction can be designated in 4-bit units

- USB ports
- Dedicated oscillator ports
- Input-only port (also used for oscillation)
- Reset pins
- Power supply pins

8 (P00 to P07)
2 (UHD+, UHD-)
2 (CF1, CF2)
1 (XT1)
1 ($\overline{\mathrm{RES}}$)
6 (VSS1 to 3, $\mathrm{V}_{\mathrm{DD}} 1$ to 3)

■Timers

- Timer 0: 16-bit timer/counter with 2 capture registers.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) $\times 2$ channels
Mode 1: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers)
+8 -bit counter (with two 8-bit capture registers)
Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)
Mode 3: 16-bit counter (with two 16-bit capture registers)

- Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/
counter with an 8-bit prescaler (with toggle outputs)
Mode 1: 8-bit PWM with an 8 -bit prescaler $\times 2$ channels
Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)
(toggle outputs also possible from lower-order 8 bits)
Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs) (lower-order 8 bits may be used as a PWM output)

- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer

1) The clock is selectable from the subclock (32.768 kHz crystal oscillation), system clock, and timer 0 prescaler output.
2) Interrupts programmable in 5 different time schemes

■SIO

- SIO0: Synchronous serial interface

1) LSB first/MSB first mode selectable
2) Transfer clock cycle: $4 / 3$ to $512 / 3$ tCYC
3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1-bit units)
(Suspension and resumption of data transmission possible in 1 byte units)

- SIO1: 8-bit asynchronous/synchronous serial interface

Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

- SIO4: Synchronous serial interface

1) LSB first/MSB first mode selectable
2) Transfer clock cycle: $4 / 3$ to $1020 / 3$ tCYC
3) Automatic continuous data transmission (1 to 4096 bytes, specifiable in 1 byte units)
(Suspension and resumption of data transmission possible in 1 byte units or in word units)
4) Auto-start-on-falling-edge function
5) Clock polarity selectable
6) CRC16 calculator circuit built in

Continued from preceding page.

- SIO9: Synchronous serial interface

1) LSB first/MSB first mode selectable
2) Transfer clock cycle: $4 / 3$ to $1020 / 3$ tCYC
3) Automatic continuous data transmission (1 to 4096 bytes, specifiable in 1 byte units)
(Suspension and resumption of data transmission possible in 1 byte units or word units)
4) Auto-start-on-falling-edge function
5) Clock polarity selectable
6) CRC16 calculator circuit built in

■Full Duplex UART

1) Data length : 7/8/9 bits selectable
2) Stop bits : 1 bit (2 bits in continuous transmission mode)
3) Baud rate $: 16 / 3$ to $8192 / 3$ tCYC

■AD Converter: 8 bits $\times 12$ channels

■PWM: Multifrequency 12-bit PWM $\times 2$ channels

■Infrared Remote Control Receiver Circuit

1) Noise rejection function (noise filter time constant: Approx. $120 \mu \mathrm{~s}$ when the 32.768 kHz crystal oscillator is selected as the base clock)
2) Supports data encoding systems such as PPM (Pulse Position Modulation) and Manchester encoding.
3) X'tal HOLD mode reset function

USB Interface (host control function)

1) Compliant with full-speed (12M bps) specifications
2) Supports 4 transfer types (control transfer, bulk transfer, interrupt transfer, and isochronous transfer).

■ Audio Interface

1) Sampling frequency (fs) : $32 \mathrm{kHz}, 44.1 \mathrm{kHz}, 48 \mathrm{kHz}$
2) Master clock frequency (internal PLL) : $12.288 \mathrm{MHz}, 16.9344 \mathrm{MHz}, 18.432 \mathrm{MHz}$
3) Bit clock selectable : 48fs/64fs
4) Data bit length : 16/18/20/24 bits
5) LSB first/MSB firsts selectable
6) Left-justification/right-justification selectable

■Watchdog Timer

- Watchdog timer using external RC circuitry
- Interrupt and reset signals selectable

■Clock Output Function

1) Can output a clock with a clock rate of $1 / 1,1 / 2,1 / 4,1 / 8,1 / 16,1 / 32$, or $1 / 64$ of the source oscillator clock selected as the system clock.
2) Can output the source oscillation clock for the subclock.

Interrupts

- 40 sources, 10 vector addresses

1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003 H	X or L	INT0
2	0000 BH	X or L	INT1
3	00013 H	H or L	INT2/TOL/INT4/UHC bus active/remote control signal receive
4	0001 BH	H or L	INT3/INT5/base timer
5	00023 H	H or L	T0H/INT6/UHC device connected/UHC disconnected/UHC resume
6	0002 BH	H or L	T1L/T1H/INT7/SIO9/AIF start
7	00033 H	H or L	SIO0/UART1 receive
8	0003 BH	H or L	SIO1/SIO4/UART1 transmit/end of AIF
9	00043 H	H or L	ADC/T6/T7/UHC-ACK/UHC-NAK/UHC error/UHC STALL
10	0004 BH	H or L	Port 0/PWMO/PWM1/T4/T5/UHC-SOF/DMCOPY

- Priority levels $\mathrm{X}>\mathrm{H}>\mathrm{L}$
- Of interrupts of the same level, the one with the smallest vector address takes precedence.

■Subroutine Stack Levels: 6144 levels maximum (The stack is allocated in RAM.)

■High-speed Multiplication/Division Instructions

- 16 bits $\times 8$ bits (5 tCYC execution time)
- 24 bits $\times 16$ bits (12 tCYC execution time)
- 16 bits $\div 8$ bits (8 tCYC execution time)
- 24 bits $\div 16$ bits (12 tCYC execution time)

Oscillation and PLL Circuits

- RC oscillation circuit (internal): For system clock
- CF oscillation circuit:
- Crystal oscillation circuit: For system clock, time-of-day clock
- PLL circuit (internal):

For USB interface (see Fig.5)), audio interface (see Fig. 6)

- Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.

1) Oscillation is not halted automatically.
2) Canceled by a system reset or occurrence of an interrupt.

- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.

1) The PLL base clock generator, CF, RC and crystal oscillators automatically stop operation.
2) There are four ways of resetting the HOLD mode.
(1) Setting the reset pin to the lower level.
(2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
(3) Having an interrupt source established at port 0
(4) Having an bus active interrupt source established in the USB host controll circuit

- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.

1) The PLL base clock generator, CF and RC oscillator automatically stop operation.
2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
3) There are six ways of resetting the X'tal HOLD mode.
(1) Setting the reset pin to the low level
(2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
(3) Having an interrupt source established at port 0
(4) Having an interrupt source established in the base timer circuit
(5) Having an bus active interrupt source established in the USB host controll circuit
(6) Having an interrupt source established in the infrared remote controller receiver circuit

■Development Tools

- On-chip debugger: TCB87- type-B + LC87F1HC4B

■Flash ROM Programming Boards

Package	Programming boards
SQFP48 (7×7)	W87F55256SQ

Recommended EPROM Programmer

Maker		Model	Supported version	Device
Flash Support Group, Inc. (FSG)	Single Programmer	AF9708/ AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)	Rev 02.82 or later	

Note 1: With the FSG onboard programmer (AF9101/AF9103) and the serial interface driver (SIB87) provided by ON Semiconductor, PC-less standalone onboard programming is possible
Note 2: Depending on programming conditions, it is necessary to use a dedicated programming device and a program. Please contact our company or FSG if you have any questions or difficulties regarding this matter.

Package Dimensions

unit: mm

SPQFP48 7x7 / SQFP48

CASE 131AJ
ISSUE A

SOLDERING FOOTPRINT*

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
$Y=$ Year
DD = Additional Traceability Data
Y = Year
M = Month

XXXXX = Specific Device Code

DDD = Additional Traceability Data
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

NOTE: The measurements are not to guarantee but for reference only.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Pin Assignment

SQFP48(7×7) : Pb-Free

SQFP48	NAME
1	P73/INT3/TOIN/RMIN
2	$\overline{\mathrm{RES}}$
3	XT1/AN10
4	XT2/AN11
5	$\mathrm{V}_{\text {SS }} 1$
6	CF1
7	CF2
8	$\mathrm{V}_{\mathrm{DD}}{ }^{1}$
9	P10/SO0
10	P11/SI0/SB0
11	P12/SCK0
12	P13/SO1
13	P14/SI1/SB1
14	P15/SCK1
15	P16/T1PWML
16	P17/T1PWMH/BUZ
17	PWM1/MCLKI
18	PWM0/MCLKO
19	$\mathrm{V}_{\mathrm{DD}}{ }^{2}$
20	$\mathrm{V}_{\text {SS }}{ }^{2}$
21	P00/AN0
22	P01/AN1
23	P02/AN2/DBGP0
24	P03/AN3/DBGP1

SQFP48	NAME
25	P04/AN4/DBGP2
26	P05/AN5/CKO/SDAT
27	P06/AN6/T6O/BCLK
28	P07/AN7/T7O/LRCK
29	P20/INT4/INT6
30	P21/INT4
31	P22/INT4/SO4/RD
32	P23/INT4/SI4/VR
33	P24/INT5/INT7/SCK4
34	P25/INT5/SO9/RD9
35	P26/INT5/SI9 $\overline{\text { WR9 }}$
36	P27/INT5/SCK9
37	UHD-
38	UHD+
39	$V_{D D}{ }^{3}$
40	$\mathrm{V}_{\text {SS }}{ }^{3}$
41	P34/UFILT
42	P33/AFILT
43	P32
44	P31/URX1
45	P30/UTX1
46	P70/INT0/T0LCP/AN8
47	P71/INT1/TOHCP/AN9
48	P72/INT2/TOIN

System Block Diagram

LC87F1HC4B
Pin Description

Pin Name	I/O	Description						Option
$\begin{aligned} & \mathrm{V}_{\mathrm{SS}^{1}, \mathrm{~V}_{\mathrm{SS}}{ }^{2}} \\ & \mathrm{~V}_{\mathrm{SS}^{3}} \end{aligned}$		- power supply						No
$\mathrm{V}_{\mathrm{DD}} 1, \mathrm{~V}_{\mathrm{DD}}{ }^{2}$		+ power supply						No
$\mathrm{V}_{\mathrm{DD}}{ }^{3}$		USB reference voltage						Yes
Port 0	I/O	- 8-bit I/O ports - I/O specifiable in 4-bit units - Pull-up resistors can be turned on and off in 4-bit units. - HOLD reset input - Port 0 interrupt input - Pin functions AD converter input ports: AN0 to AN7(P00 to P07) Onchip debugger pins: DBGP0 to DBGP2(P02 to P04) P05: System clock output/audio interface SDAT input/output P06: Timer 6 toggle output/audio interface BCLK input/output P07: Timer 7 toggle output/audio interface LRCK input/output						Yes
P00 to P07								
Port 1	1/O	- 8-bit I/O ports - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units. - Pin functions						Yes
P10 to P17								
Port 2	I/O	- 8-bit I/O ports - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units. - Pin functions P20 to P23: INT4 input/HOLD reset input/timer 1 event input/timer OL capture input/ timer 0 H capture input P24 to P27: INT5 input/HOLD reset input/timer 1 event input/timer OL capture input/ timer OH capture input P20: INT6 input/timer OL capture 1 input P22: SIO4 data input/output/parallel interface $\overline{\mathrm{RD}}$ output P23: SIO4 data input/output/parallel interface $\overline{\mathrm{WR}}$ output P24: SIO4 clock input/output/INT7 input/timer OH capture 1 input P25: SIO9 data input/output/parallel interface $\overline{\mathrm{RD9}}$ output P26: SIO9 data input/output/parallel interface $\overline{\mathrm{WR9}}$ output P27: SIO9 clock input/output Interrupt acknowledge types						Yes
P20 to P27								
Port 3	1/0	- 5-bit I/O ports - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units. - Pin functions P30: UART1 transmit P31: UART1 receive P33: Audio interface PLL filter pin (see Fig. 6.) P34: USB interface PLL filter pin (see Fig. 5.)						Yes
P30 to P34								

Continued on next page.

LC87F1HC4B
Continued from preceding page.

Pin Name	I/O	Description						Option
Port 7	I/O	- 4-bit I/O port - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units. - Pin functions P70: INT0 input/HOLD reset input/timer OL capture input/watchdog timer output P71: INT1 input/HOLD reset input/timer 0 H capture input P72: INT2 input/HOLD reset input/timer 0 event input/timer OL capture input/ high speed clock counter input P73: INT3 input (input with noise filter)/timer 0 event input/timer OH capture input/ IR remote controller receiver input AD converter input ports: AN8(P70), AN9(P71) Interrupt acknowledge types						No
P70 to P73								
PWMO PWM1	1/O	PWM0, PWM1 output port General-purpose input port - Pin functions PWM0: Audio interface master clock output PWM1: Audio interface master clock input						No
UHD-	I/O	USB data I/O pin UHD-/general-purpose I/O port						No
UHD+	I/O	USB data I/O pin UHD+/general-purpose I/O port						No
$\overline{\mathrm{RES}}$	Input	Reset pin						No
XT1	Input	- 32.768 kHz crystal oscillator input - Pin functions General-purpose input port AD converter input ports: AN10 Must be connected to $\mathrm{V}_{\mathrm{DD}} 1$ when not to be used.						No
XT2	1/O	- 32.768 kHz crystal oscillator output - Pin functions General-purpose I/O AD converter input port: AN11 Must be set for oscillation and kept open if not to be used.						No
CF1	Input	Ceramic/crystal resonator input						No
CF2	Output	Ceramic/crystal resonator output						No

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.
Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type		Output type
P00 to P07 P10 to P17 P20 to P27 P30 to P34	1 bit	1	CMOS	Programmable (Note 1)
	1 bit	2	Nch-open drain	No
P71 to P73		1	CMOS	Programmable
PWM0, PWM1	-	Nch-open drain	Programmable	
UHD+, UHD-	-	No	Nch-open drain	Programmable
XT1	-	No	CMOS	Programmable
XT2	No	CMOS	No	

Note 1: Programmable pull-up resistors for port 0 are controlled in 4 bit units (P00 to 03, P04 to 07).

Power Pin Treatment

Connect the IC as shown below to minimize the noise input to the VDD^{1} pin. and extend the backup period. Be sure to electrically short the $\mathrm{V}_{\mathrm{SS}} 1, \mathrm{~V}_{\mathrm{SS}} 2$, and $\mathrm{V}_{\mathrm{SS}} 3$ pins.

Example 1: When the microcontroller is in the backup state in the HOLD mode, the power to sustain the high level of output ports is supplied by their backup capacitors.

Example 2: The high level output at ports is not sustained and unstable in the HOLD backup mode.

USB Reference Power Option

When a voltage 4.5 to 5.5 V is supplied to $\mathrm{V}_{\mathrm{DD}} 1$ and the internal USB reference voltage circuit is activated, the reference voltage for USB port output is generated. The active/inactive state of the reference voltage circuit can be switched by option select. The procedure for marking the option selection is described below.

		(1)	(2)	(3)	(4)
Option settings	USB regulator	USE	USE	USE	NONUSE
	USB regulator at HOLD mode	USE	NONUSE	NONUSE	NONUSE
	USB regulator at HALT mode	USE	NONUSE	USE	NONUSE
	Normal mode	active	active	active	inactive
	HOLD mode	active	inactive	inactive	inactive
	HALT mode	active	inactive	active	inactive

- When the USB reference voltage circuit is made inactive, the level of the reference voltage for USB port output is equal to $\mathrm{V}_{\mathrm{DD}} 1$.
- Selection (2) or (3) can be used to set the reference voltage circuit inactive in HOLD or HALT mode.
- When the reference voltage circuit is activated, the current drain increases by approximately $100 \mu \mathrm{~A}$ compared with when the reference voltage circuit is inactive.

Example 1: $\mathrm{V}_{\mathrm{DD}} 1=\mathrm{V}_{\mathrm{DD}}{ }^{2=3.3 V}$

- Inactivating the reference voltage circuit (selection (4)).
- Connecting $\mathrm{V}_{\mathrm{DD}} 3$ to $\mathrm{V}_{\mathrm{DD}} 1$ and $\mathrm{V}_{\mathrm{DD}} 2$.

Example 2: $\mathrm{V}_{\mathrm{DD}} 1=\mathrm{V}_{\mathrm{DD}}{ }^{2}=5.0 \mathrm{~V}$

- Activating the reference voltage circuit (selection (1)).
- Isolating $\mathrm{V}_{\mathrm{DD}} 3$ from $\mathrm{V}_{\mathrm{DD}} 1$ and $\mathrm{V}_{\mathrm{DD}} 2$, and connecting capacitor between $\mathrm{V}_{\mathrm{DD}} 3$ and V_{SS}.

LC87F1HC4B
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VSS}^{2}=\mathrm{VSS}^{2}=\mathrm{VSS}^{3}=0 \mathrm{~V}$

Parameter		Symbol	Pin/Remarks	Conditions		Specification				
		$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
Maximum supply voltage			V_{DD} max	$\mathrm{V}_{\mathrm{DD}}{ }^{1}, \mathrm{~V}_{\mathrm{DD}}{ }^{2}, \mathrm{~V}_{\mathrm{DD}}{ }^{3}$	$\mathrm{V}_{D D^{1}}=\mathrm{V}_{\mathrm{DD}}{ }^{2}=\mathrm{V}_{\mathrm{DD}}{ }^{3}$		-0.3		+6.5	
Input voltage		$\mathrm{V}_{\mathrm{l}}(1)$	XT1, CF1			-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$		
Input/output voltage		$\mathrm{V}_{\mathrm{IO}}(1)$	Ports 0, 1, 2, 3, 7 PWM0, PWM1 XT2			-0.3		$V_{D D}+0.3$		
Peak output current		IOPH(1)	Ports 0, 1, 2	- When CMOS output type is selected - Per 1 applicable pin		-10			mA	
		IOPH(2)	PWM0, PWM1	Per 1 applicable pin		-20				
		IOPH(3)	Port 3 P71 to P73	- When CMOS output type is selected - Per 1 applicable pin		-5				
	Average output current (Note 1-1)	$\mathrm{IOMH}(1)$	Ports 0, 1, 2	- When CMOS output type is selected - Per 1 applicable pin		-7.5				
		IOMH(2)	PWM0, PWM1	Per 1 applicable pin		-15				
		IOMH(3)	Port 3 P71 to P73	- When CMOS output type is selected - Per 1 applicable pin		-3				
	Total output current	$\Sigma \mathrm{IOAH}(1)$	Ports 0, 2	Total current of all applicable pins		-25				
		$\Sigma \mathrm{IOAH}(2)$	Port 1 PWM0, PWM1	Total current of all applicable pins		-25				
		$\Sigma \mathrm{IOAH}(3)$	Ports 0, 1, 2 PWM0, PWM1	Total current of all applicable pins		-45				
		$\Sigma \mathrm{IOAH}(4)$	Port 3 P71 to P73	Total current of all applicable pins		-10				
		$\Sigma \mathrm{IOAH}(5)$	UHD+, UHD-	Total current of all applicable pins		-25				
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2 PWM0, PWM1	Per 1 applicable pin				20		
		IOPL(2)	P00, P01	Per 1 applicable pin				30		
		IOPL(3)	$\begin{aligned} & \text { Ports 3, } 7 \\ & \text { XT2 } \end{aligned}$	Per 1 applicable pin				10		
	Average output current (Note 1-1)	IOML(1)	P02 to P07 Ports 1, 2 PWM0, PWM1	Per 1 applicable pin				15		
		IOML(2)	P00, P01	Per 1 applicable pin				20		
		IOML(3)	$\begin{aligned} & \text { Ports 3, } 7 \\ & \text { XT2 } \\ & \hline \end{aligned}$	Per 1 applicable pin				7.5		
	Total output current	£IOAL(1)	Ports 0, 2	Total current of all applicable pins				45		
		£IOAL(2)	Port 1 PWM0, PWM1	Total current of all applicable pins				45		
		£IOAL(3)	Ports 0, 1, 2 PWM0, PWM1	Total current of all applicable pins				80		
		$\Sigma \mathrm{IOAL}(4)$	$\begin{aligned} & \text { Ports } 3,7 \\ & \text { XT2 } \\ & \hline \end{aligned}$	Total current of all applicable pins				15		
		$\Sigma \mathrm{IOAL}(5)$	UHD+, UHD-	Total current of all applicable pins				25		
Allowable power Dissipation		Pd max	SQFP48(7×7)	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$				140	mW	
Operating ambient Temperature		Topr				-40		+85		
Storage ambient temperature		Tstg				-55		+125	${ }^{\circ} \mathrm{C}$	

Note 1-1: The average output current is an average of current values measured over 100 ms intervals.
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

LC87F1HC4B
Allowable Operating Conditions at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=\mathrm{V}_{\mathrm{SS}} 2=\mathrm{V}$ SS $3=0 \mathrm{~V}$

Note 2-1: VDD must be held greater than or equal to 3.0 V in the flash ROM onboard programming mode.
Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of $1 / 1$ and $6 / \mathrm{FmCF}$ at a division ratio of $1 / 2$.
Note 2-3: See Tables 1 and 2 for the oscillation constants.

[^0]
LC87F1HC4B

Electrical Characteristics at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}} 1=\mathrm{V}_{\mathrm{SS}} 2=\mathrm{V}_{\mathrm{SS}} 3=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
High level input current	${ }^{1 H}(1)$	Ports 0, 1, 2, 3 Port 7 $\overline{\text { RES }}$ PWM0, PWM1 UHD+, UHD-	Output disabled Pull-up resistor off $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}$ (Including output Tr's off leakage current)	2.7 to 5.5			1	$\mu \mathrm{A}$
	${ }_{1 / \mathrm{H}}(2)$	XT1, XT2	Input port configuration $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}$	2.7 to 5.5			1	
	$\mathrm{IIH}^{(3)}$	CF1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	2.7 to 5.5			15	
Low level input current	$\mathrm{I}_{\mathrm{IL}}(1)$	Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1 UHD+, UHD-	Output disabled Pull-up resistor off $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{SS}}$ (Including output Tr's off leakage current)	2.7 to 5.5	-1			
	IIL (2)	XT1, XT2	Input port configuration $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	2.7 to 5.5	-1			
	IIL (3)	CF1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	2.7 to 5.5	-15			
High level output voltage	$\mathrm{V}_{\mathrm{OH}}(1)$	Ports 0, 1, 2, 3 P71 to P73	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$	4.5 to 5.5	$\mathrm{V}_{\mathrm{DD}}{ }^{-1}$			V
	$\mathrm{V}_{\mathrm{OH}}(2)$		$\mathrm{lOH}^{=-0.4 m A}$	3.0 to 5.5	$\mathrm{V}_{\mathrm{DD}} \mathrm{V}^{-0.4}$			
	$\mathrm{V}_{\mathrm{OH}}(3)$		$\mathrm{l}^{\mathrm{OH}}=-0.2 \mathrm{~mA}$	2.7 to 5.5	$\mathrm{V}_{\mathrm{DD}}{ }^{-0.4}$			
	$\mathrm{V}_{\mathrm{OH}}(4)$	PWM0, WM1 P05 to P07 (Note 3-1)	$\mathrm{IOH}^{\prime}=-10 \mathrm{~mA}$	4.5 to 5.5	$\mathrm{V}_{\mathrm{DD}}{ }^{-1.5}$			
	$\mathrm{V}_{\mathrm{OH}}(5)$		$\mathrm{IOH}^{\prime}=-1.6 \mathrm{~mA}$	3.0 to 5.5	$\mathrm{V}_{\mathrm{DD}}{ }^{-0.4}$			
	$\mathrm{V}_{\mathrm{OH}}{ }^{(6)}$		$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$	2.7 to 5.5	$\mathrm{V}_{\mathrm{DD}}{ }^{-0.4}$			
Low level output voltage	$\mathrm{V}_{\mathrm{OL}}(1)$	P00, P01	$\mathrm{I}^{\mathrm{OL}}=30 \mathrm{~mA}$	4.5 to 5.5			1.5	
	$\mathrm{V}_{\mathrm{OL}}(2)$		$\mathrm{I}^{\mathrm{OL}}=5 \mathrm{~mA}$	3.0 to 5.5			0.4	
	$\mathrm{V}_{\text {OL }}(3)$		$\mathrm{l}_{\mathrm{OL}}=2.5 \mathrm{~mA}$	2.7 to 5.5			0.4	
	$\mathrm{V}_{\mathrm{OL}}(4)$	Ports 0, 1, 2 PWM0, PWM1 XT2	$\mathrm{I}^{\mathrm{OL}}=10 \mathrm{~mA}$	4.5 to 5.5			1.5	
	$\mathrm{V}_{\mathrm{OL}}(5)$		$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	3.0 to 5.5			0.4	
	$\mathrm{V}_{\mathrm{OL}}(6)$		$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$	2.7 to 5.5			0.4	
	$\mathrm{V}_{\mathrm{OL}}(7)$	Ports 3, 7	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	3.0 to 5.5			0.4	
	$\mathrm{V}_{\mathrm{OL}}(8)$		$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$	2.7 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3 Port 7	$\mathrm{V}_{\mathrm{OH}}=0.9 \mathrm{~V}_{\text {DD }}$	4.5 to 5.5	15	35	80	$\mathrm{k} \Omega$
	Rpu(2)			2.7 to 5.5	18	50	150	
Hysteresis voltage	VHYS	$\overline{R E S}$ Port 1, 2, 3, 7		2.7 to 5.5		$0.1 V_{D D}$		V
Pin capacitance	CP	All pins	For pins other than that under test: $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	2.7 to 5.5		10		pF

Note 3-1: When the CKO system clock output function (P05) or audio interface output function (P05 to P07)is used.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

LC87F1HC4B
Serial I/O Characteristics at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }} 1=\mathrm{V}_{\text {SS }} 2=\mathrm{V}_{\mathrm{SS}} 3=0 \mathrm{~V}$

1. SIOO Serial I/O Characteristics (Note 4-1-1)

Parameter			Symbol	Pin/ Remarks	Conditions		Specification				
			$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
		Frequency		tSCK(1)	SCK0(P12)	See Fig. 8.		2			
		Low level pulse width	tSCKL(1)				1				
		High level	tSCKH(1)				1				
	$\begin{aligned} & \text { 드 } \\ & \text { O} \end{aligned}$		tSCKHA(1a)		- Continuous data transfer mode - USB, AIF, SIO4, SIO9, and DMCOPY not used at the same time. - See Fig. 8. - (Note 4-1-2)	27 to 5.5	4				
	$\begin{aligned} & \text { 들 } \\ & \text { 른 } \end{aligned}$		tSCKHA(1b)		- Continuous data transfer mode - USB used at the same time. - AIF, SIO4, SIO9, and DMCOPY not used at the same time. - See Fig. 8. - (Note 4-1-2)	2.7 to 5.5	7			tCYC	
			tSCKHA(1c)		- Continuous data transfer mode - USB, AIF, SIO4, SIO9, and DMCOPY used at the same time. - See Fig. 8. - (Note 4-1-2)		9				
		Frequency	tSCK(2)	SCK0(P12)	- When CMOS output type is selected	2.7 to 5.5	4/3				
		Low level pulse width	tSCKL(2)		- See Fig. 8.		1/2			tSCK	
		High level pulse width	tSCKH(2)				1/2				
			tSCKHA(2a)		- Continuous data transfer mode - USB, AIF, SIO4, SIO9, and DMCOPY not used at the same time. - When CMOS output type is selected - See Fig. 8.		$\begin{array}{r} \mathrm{tSCKH}(2) \\ +2 \mathrm{tCYC} \end{array}$		$\begin{array}{r} \text { tSCKH(2) } \\ + \\ (10 / 3) \mathrm{tCYC} \end{array}$		
			tSCKHA(2b)		- Continuous data transfer mode - USB used at the same time. - AIF, SIO4, SIO9, and DMCOPY not used at the same time. - When CMOS output type is selected. - See Fig. 8.		$\begin{array}{r} \mathrm{tSCKH}(2) \\ +2 \mathrm{tCYC} \end{array}$		$\begin{array}{r} \mathrm{tSCKH}(2) \\ + \\ (19 / 3) \mathrm{tCYC} \end{array}$	tCYC	
			tSCKHA(2c)		- Continuous data transfer mode - USB, AIF, SIO4, SIO9, and DMCOPY used at the same time - When CMOS output type is selected - See Fig. 8.		$\begin{array}{r} \mathrm{tSCKH}(2) \\ +2 \mathrm{tCYC} \end{array}$		$\begin{array}{r} \text { tSCKH(2) } \\ + \\ (25 / 3) \mathrm{tCYC} \end{array}$		

Note 4-1-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.
Note 4-1-2: In an application where the serial clock input is to be used in the continuous data transfer mode, the time from SIORUN being set when serial clock is high to the falling edge of the first serial clock must be longer than tSCKHA.

Continued from preceding page.

Parameter			Symbol	Pin/ Remarks	Conditions		Specification				
			$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
	Data setup time			tsDI(1)	$\begin{aligned} & \text { SB0(P11), } \\ & \text { SIO(P11) } \end{aligned}$	- Must be specified with respect to rising edge of SIOCLK. - See Fig. 8.	2.7 to 5.5	0.03			$\mu \mathrm{s}$
	Data hold time		thDI(1)	0.03							
	$\begin{aligned} & \text { 능 } \\ & \text { ㅇ } \\ & \text { 흘 } \end{aligned}$	Output delay time	tdD0(1)	$\begin{aligned} & \text { SOO(P10), } \\ & \text { SB0(P11) } \end{aligned}$	- Continuous data transfer mode - (Note 4-1-3)	2.7 to 5.5			$\begin{array}{r} (1 / 3) t C Y C \\ +0.05 \end{array}$		
			tdD0(2)		- Synchronous 8-bit mode - (Note 4-1-3)				$\begin{aligned} & 1 \mathrm{tCYC} \\ & +0.05 \end{aligned}$		
			tdD0(3)		(Note 4-1-3)				$\begin{array}{r} (1 / 3) \text { tCYC } \\ +0.05 \end{array}$		

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK.
Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 8.
2. SIO1 Serial I/O Characteristics (Note 4-2-1)

Parameter			Symbol	Pin/ Remarks	Conditions		Specification				
			$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
		Frequency		tSCK(3)	SCK1(P15)	See Fig. 8.	2.7 to 5.5	2			tCYC
		Low level pulse width	tSCKL (3)	1							
		High level pulse width	tSCKH(3)	1							
		Frequency	tSCK(4)	SCK1(P15)	- When CMOS output type is selected - See Fig. 8.	2.7 to 5.5	2				
		Low level pulse width	tSCKL(4)				1/2			tSCK	
		High level pulse width	tSCKH(4)				1/2				
	Data setup time		tsDI(2)	$\begin{aligned} & \hline \text { SB1(P14), } \\ & \text { SI1(P14) } \end{aligned}$	- Must be specified with respect to rising edge of SIOCLK. - See Fig. 8.	2.7 to 5.5	0.03				
		a hold time	thDI(2)				0.03				
		tput delay time	tdD0(4)	$\begin{aligned} & \text { SO1(P13), } \\ & \text { SB1(P14) } \end{aligned}$	- Must be specified with respect to falling edge of SIOCLK. - Must be specified as the time to the beginning of output state change in open drain output mode. - See Fig. 8.	2.7 to 5.5			$\begin{array}{r} (1 / 3) \text { tCYC } \\ +0.05 \end{array}$	$\mu \mathrm{s}$	

Note 4-2-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.

3. SIO4 Serial I/O Characteristics (Note 4-3-1)

Note 4-3-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.
Note 4-3-2: In an application where the serial clock input is to be used in the continuous data transfer mode, the period from the time SI4RUN is set with the serial clock set high to the falling edge of the first serial clock must be longer than tSCKHA.
Note 4-3-3: When using the serial clock output, make sure that the load at the SCK4 (P24) pin meets the following conditions:
Clock rise time $\mathrm{tSCKR}<0.037 \mu \mathrm{~s}$ (see Figure 12.) at $\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$

Continued from preceding page.

Parameter		Symbol	Pin/ Remarks	Conditions		Specification				
		$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
	Data setup time		tsDI(3)	$\begin{aligned} & \text { SO4(P22), } \\ & \text { SI4(P23) } \end{aligned}$	- Must be specified with respect to falling edge of SIOCLK. - See Fig. 8	2.7 to 5.5	0.03			
	Data hold time	thDI(3)	0.03							
	Output delay time	tdD0(5)	$\begin{aligned} & \text { SO4(P22), } \\ & \text { SI4(P23) } \end{aligned}$	- Must be specified with respect to rising edge of SIOCLK. - Must be specified as the time to the beginning of output state change in open drain output mode. - See Fig. 8.	2.7 to 5.5			$\begin{array}{r} (1 / 3)+\mathrm{tCYC} \\ +0 \text { O } \end{array}$	$\mu \mathrm{S}$	

4. SIO9 Serial I/O Characteristics (Note 4-4-1)

Parameter			Symbol	Pin/ Remarks	Conditions		Specification				
			V_{DD} [V]			min	typ	max	unit		
$\begin{aligned} & \text { 등 } \\ & \text { 응 } \\ & \text { 즣 } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { 듬 } \\ & \text { O} \\ & \text { I } \\ & \text { İ } \\ & \underline{O} \end{aligned}$	Frequency		tSCK(7)	SCK9(P27)	See Fig. 8.	2.7 to 5.5	2			tCYC
		Low level pulse width	tSCKL(7)	1							
		High level	tSCKH(7)	1							
			tSCKHA(7a)	- USB, SIOO continuous transfer mode, AIF, SIO4 and DMCOPY not used at the same time. - See Fig. 8. - (Note 4-4-2)		4					
			tSCKHA(7b)	- USB used at the same time. - SIOO continuous transfer mode, AIF, SIO4, and DMCOPY not used at the same time. - See Fig. 8. - (Note 4-4-2)		7					
			tSCKHA(7c)	- USB, SIOO continuous transfer mode, SIO4 and DMCOPY used at the same time. - AIF not used at the same time. - See Fig. 8. - (Note 4-4-2)		15					

Note 4-4-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.
Note 4-4-2: In an application where the serial clock input is to be used in the continuous data transfer mode, the period from the time SI9RUN is set with the serial clock set high to the falling edge of the first serial clock must be longer than tSCKHA.

Continued from preceding page

Note 4-4-3: When using the serial clock output, make sure that the load at the SCK9 (P27) pin meets the following conditions:
Clock rise time $\mathrm{tSCKR}<0.037 \mu$ (see Figure 12.) at $\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$

Pulse Input Conditions at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}} 1=\mathrm{V}_{\mathrm{SS}} 2=\mathrm{V}_{\mathrm{SS}} 3=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
High/low level pulse width	$\mathrm{tP} 1 \mathrm{H}(1)$ tP1L(1)	INT0(P70), INT1(P71), INT2(P72), INT4(P20 to P23), INT5(P24 to P27), INT6(P20), INT7(P24)	- Interrupt source flag can be set. - Event inputs for timer 0 or 1 are enabled.	2.7 to 5.5	1			tCYC
	$\begin{aligned} & \mathrm{tPIH}(2) \\ & \text { tPIL(2) } \end{aligned}$	INT3(P73) when noise filter time constant is 1/1	- Interrupt source flag can be set. - Event inputs for timer 0 are enabled.	2.7 to 5.5	2			
	$\begin{aligned} & \hline \mathrm{tPIH}(3) \\ & \mathrm{tPIL}(3) \end{aligned}$	INT3(P73) when noise filter time constant is 1/32	- Interrupt source flag can be set. - Event inputs for timer 0 are nabled.	2.7 to 5.5	64			
	$\begin{aligned} & \mathrm{tPIH}(4) \\ & \mathrm{tPIL}(4) \end{aligned}$	INT3(P73) when noise filter time constant is 1/128	- Interrupt source flag can be set. - Event inputs for timer 0 are enabled.	2.7 to 5.5	256			
	tPIL(5)	RMIN(P73)	Recognized by the infrared remote control receiver circuit as a signal	2.7 to 5.5	4			RMCK (Note 5-1)
	tPIL(6)	$\overline{\mathrm{RES}}$	Resetting is enabled.	2.7 to 5.5	200			$\mu \mathrm{s}$

Note 5-1: Represents the period of the reference clock (1 tCYC to 128 tCYC or the source frequency of the subclock) for the infrared remote control receiver circuit.

AD Converter Characteristics at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }} 1=\mathrm{V}_{\text {SS }} 2=\mathrm{V}_{\text {SS }} 3=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Resolution	N	ANO(P00) to AN7(P07), AN8(P70), AN9(P71), AN10(XT1), AN11(XT2)		3.0 to 5.5		8		bit
Absolute accuracy	ET		(Note 6-1)	3.0 to 5.5			± 1.5	LSB
Conversion time	TCAD		AD conversion time $=32 \times$ tCYC (when ADCR2=0) (Note 6-2)	4.5 to 5.5	$\begin{array}{r} 15.68 \\ \text { (tCYC= } \\ 0.490 \mu \mathrm{~s}) \end{array}$		$\begin{array}{r} 97.92 \\ \text { (tCYC= } \\ 3.06 \mu \mathrm{~s}) \end{array}$	$\mu \mathrm{S}$
				3.0 to 5.5	$\begin{array}{r} 23.52 \\ \text { (tCYC= } \\ 0.735 \mu \mathrm{~s}) \\ \hline \end{array}$		$\begin{array}{r} 97.92 \\ \text { (tCYC= } \\ 3.06 \mu \mathrm{~s}) \\ \hline \end{array}$	
			AD conversion time $=64 \times$ tCYC (when ADCR2=1) (Note 6-2)	4.5 to 5.5	$\begin{array}{r} 18.82 \\ (\mathrm{tCYC}= \\ 0.294 \mu \mathrm{~s}) \end{array}$		$\begin{array}{r} 97.92 \\ \text { (tCYC= } \\ 1.53 \mu \mathrm{~s}) \end{array}$	
				3.0 to 5.5	$\begin{array}{r} 47.04 \\ \text { (tCYC= } \\ 0.735 \mu \mathrm{~s}) \end{array}$		$\begin{array}{r} 97.92 \\ \text { (tCYC= } \\ 1.53 \mu \mathrm{~s}) \\ \hline \end{array}$	
Analog input voltage range	VAIN			3.0 to 5.5	VSS		$V_{D D}$	V
Analog port input current	IAINH		VAIN $=\mathrm{V}_{\text {DD }}$	3.0 to 5.5			1	$\mu \mathrm{A}$
	IAINL		$\mathrm{VAIN}=\mathrm{V}_{\text {SS }}$	3.0 to 5.5	-1			

Note 6-1: The quantization error ($\pm 1 / 2 \mathrm{LSB}$) is excluded from the absolute accuracy.
Note 6-2: The conversion time refers to the period from the time when an instruction for starting a conversion process is issued to the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

Consumption Current Characteristics at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}} 1=\mathrm{V}_{\mathrm{SS}} 2=\mathrm{V}_{\mathrm{SS}} 3=0 \mathrm{~V}$

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

Continued from preceding page.

Parameter	Symbol	Pin/ Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
HALT mode consumption current (Note 7-1)	IDDHALT(11)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}{ }^{1} \\ & =\mathrm{V}_{D D^{2}} \\ & =\mathrm{V}_{\mathrm{DD}}{ }^{3} \end{aligned}$	- HALT mode - FmCF $=0 \mathrm{MHz}$ (oscillation stopped) - FsX'tal $=32.768 \mathrm{kHz}$ crystal oscillation mode - System clock set to crystal oscillation. (32.768 kHz) - Internal RC oscillation stopped - $1 / 2$ frequency division ratio	4.5 to 5.5		31	132	mA
	IDDHALT(12)			3.0 to 3.6		9.1	39	$\mu \mathrm{A}$
	IDDHALT(13)			2.7 to 3.0		6.3	27	
HOLD mode consumption current	IDDHOLD(1)	$\mathrm{V}_{\mathrm{DD}} 1$	- HOLD mode - $\mathrm{CF} 1=\mathrm{V}_{\mathrm{DD}}$ or open (External clock mode)	4.5 to 5.5		0.14	39	
	IDDHOLD(2)			3.0 to 3.6		0.04	19	
	IDDHOLD(3)			2.7 to 3.0		0.04	17	
Timer HOLD mode consumption current	IDDHOLD(4)		- Timer HOLD mode - CF1=V DD or open (External clock mode) - FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		25	115	
	IDDHOLD(5)			3.0 to 3.6		6.0	32	
	IDDHOLD(6)			2.7 to 3.0		3.7	20	

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors

USB Characteristics and Timing at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}} 1=\mathrm{V}_{\mathrm{SS}} 2=\mathrm{V}_{\mathrm{SS}} 3=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Specification			
			min	typ	max	unit
High level output	V_{OH} (USB)	- $15 \mathrm{k} \Omega \pm 5 \%$ to GND	2.8		3.6	V
Low level output	$\mathrm{V}_{\text {OL(USB }}$	- $1.5 \mathrm{k} \Omega \pm 5 \%$ to 3.6 V	0.0		0.3	V
Output signal crossover voltage	$\mathrm{V}_{\text {CRS }}$		1.3		2.0	V
Differential input sensitivity	$\mathrm{V}_{\text {DI }}$	- \mid (UHD+)-(UHD-) \mid	0.2			V
Differential input common mode range	V_{CM}		0.8		2.5	V
High level input	V_{IH} (USB)		2.0			V
Low level input	V_{IL} (USB)				0.8	V
USB data rise time	t_{R}	- $\mathrm{R}_{\mathrm{S}}=33 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4		20	ns
USB data fall time	${ }^{\text {t }}$ F	- $\mathrm{R}_{\mathrm{S}}=33 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4		20	ns

F-ROM Programming Characteristics at $\mathrm{Ta}=+10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=0 \mathrm{~V}$

Parameter	Symbol	Pin/ Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Onboard programming current	IDDFW(1)	$\mathrm{V}_{\mathrm{DD}} 1$	- Excluding power dissipation in the microcontroller block	3.0 to 5.5		5	10	mA
Programming time	tFW(1)		- Erase operation	3.0 to 5.5		20	30	ms
	tFW(2)		- Write operation			40	60	$\mu \mathrm{s}$

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using an our company-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.
Table 1 shows the characteristics of a oscillation circuit when USB host function is not used.
If USB host function is to be used, it is absolutely recommended to use an oscillator that satisfies the precision and stability according to the USB standards.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant			Operating Voltage Range [V]	Oscillation Stabilization Time		Remarks
			$\begin{gathered} \mathrm{C} 1 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{C} 2 \\ {[\mathrm{pF}]} \end{gathered}$	Rd1 [Ω]		$\begin{gathered} \text { typ } \\ \text { [ms] } \end{gathered}$	max [ms]	
6 MHz	MURATA	CSTCR6M00GH5L**-R0	(39)	(39)	1k	2.7 to 5.5	0.1	0.5	C1 and C2 integrated SMD type
8 MHz	MURATA	CSTCE8M00GH5L**-R0	(33)	(33)	470	3.0 to 5.5	0.1	0.5	
10 MHz	MURATA	CSTCE10M0GH5L**R0	(33)	(33)	330	3.0 to 5.5	0.1	0.5	
12 MHz	MURATA	CSTCE12M0GH5L**-R0	(33)	(33)	330	3.0 to 5.5	0.1	0.5	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in the following cases (see Figure 4):

- Till the oscillation gets stabilized after VDD goes above the operating voltage lower limit.
- Till the oscillation gets stabilized after the instruction for starting the main clock oscillation circuit is executed
- Till the oscillation gets stabilized after the HOLD mode is reset.
- Till the oscillation gets stabilized after the X'tal HOLD mode is reset with CFSTOP (OCR register, bit 0) set to 0

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using an our company-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating Voltage Range [V]	Oscillation Stabilization Time		Remarks
			$\begin{gathered} \mathrm{C} 3 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{C} 4 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{Rf} \\ {[\Omega]} \end{gathered}$	Rd2 [Ω]		typ [s]	max [s]	
32.768 kHz	$\begin{aligned} & \text { EPSON } \\ & \text { TOYOCOM } \end{aligned}$	MC-306	18	18	OPEN	560k	2.7 to 5.5	1.1	3.0	$\begin{gathered} \text { Applicable } \\ \text { CL value }=12.5 \mathrm{pF} \\ \text { SMD type } \\ \hline \end{gathered}$

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in the following cases (see Figure 4):

- Till the oscillation gets stabilized after the instruction for starting the subclock oscillation circuit is executed
- Till the oscillation gets stabilized after the HOLD mode is reset with EXTOSC (OCR register, bit 6) set to 1

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

Figure 1. CF Oscillator Circuit

Figure 2. Crystal Oscillator Circuit

Figure 3. AC Timing Measurement Point

Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time
Figure 4. Oscillation Stabilization Time

When using the internal PLL circuit to generate the 48 MHz clock for USB, it is necessary to connect a filter circuit such to the P34/UFILT pin such as that shown in the left Fig.

Figure 5. External Filter Circuit for the Internal USB-dedicated PLL Circuit

To generate the master clock for the audio interface using the internal PLL circuit, it is necessary to connect a filter circuit to the P33/AFILT pin that is shown in the left Fig.

Figure 6. External Filter Circuit for Audio Interface (Used with Internal PLL Circuit)

Figure 7. USB Port Peripheral Circuit

Note:
Determine the value of CRES and RRES so that the reset signal is present for a period of 200μ s after the supply voltage goes beyond the lower limit of the IC's operating voltage.

Figure 8. Reset Circuit

Figure 9. Serial Input/Output Waveform

Figure 10. Pulse Input Timing Signal Waveform

Figure 11. USB Data Signal Timing and Voltage Level

tSCKR:

Defined as the time period from the time the state of the output starts changing till the time it reaches the minimum value of $\mathrm{V}_{\mathrm{IH}}(1)$.

Figure 12. Serial Clock Output Timing Signal Waveform

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC87F1HC4BUWA-2H	SPQFP48 7x7 / SQFP48 (Pb-Free)	$2500 /$ Tray JEDEC

[^1]
[^0]: Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

[^1]: ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

