
GPIO Zero
Programming

With

by Alex Eames

Introduction
Protected Ports Perfectly Positioned

The RasPiO®1 Pro Hat was developed out of the perceived need for a
HAT which puts the Raspberry Pi's GPIO ports in numerical order and
clearly labelled. You don't have to count pins or wonder which port
you're connecting to. Each port has a female socket to plug your wires
or components into. The ports are arranged, along with plenty of
power and GND sockets, around a 72-point breadboard.

If you want to do some electronics, it's made a lot easier for you. LEDs
need no current-limiting resistors because they are already built-in.

Pro Hat also has a protection circuit on each GPIO port, which means
you won't damage your Pi's ports by wiring something up incorrectly.
(But it is still possible to cause damage by directly shorting 3V3 or 5V
to GND.)

Additionally, if you want to bypass the 330 Ohm resistor on a GPIO
port, you can connect directly to the unprotected side where all the
ports2 are broken out as through-holes. This is particularly useful for
buzzers, which usually require slightly over the 10mA limit imposed by
the resistors.

Ben Nuttall and Dave Jones have created GPIO Zero as the ideal way
into Python GPIO programming. Using it with the Pro HAT means there
is nothing to install before you can start playing.

Also, by keeping the board inexpensive, I hope it's realistic for
individuals, schools and jams to be able to get hold of some and
discover the joys of controlling the world with the Raspberry Pi and
GPIO Zero.

1 RasPiO is a trademark of Alex Eames. Raspberry Pi is a trademark of the Raspberry Pi Foundation
2 Apart from GPIO26, which is used for the HAT EEPROM

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 2 of 24

http://rasp.io/prohat

 Pro Hat Instructions

The RasPiO Pro Hat uses the BCM GPIO port numbering scheme. This
is a perfect match for GPIO Zero.

Hardware Technical Overview

This page is mainly for the technically minded. If you just want to get on
with experimenting, you can skip to the next section.

Port Protection
The port protection is via a 3V3 Zener diode and 330 Ohm resistor on
each port. The Zener diode clips over-voltage down to a safe 3V3. The
330 Ohm resistor limits the current into or out of a port to 10 mA. This
is enough to prevent port damage in most situations.

Hardware Pull-ups
GPIOs 2, 3 and 26 all have hardware pull-ups. GPIOs 2 & 3 (the i2c
ports) have 2k pull-up resistors on them. GPIO 26 on the Pro Hat is also
connected to the EEPROM write-protect pin, which has a 1k pull-up.
This means that the default state for these pins is HIGH unless brought
LOW in software. So if you connect an LED to any of these ports it will

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 3 of 24

Schematic of port protection circuit

http://rasp.io/prohat

be (dimly) lit by default.

SPI Limitations
I've found that SPI devices (e.g. MCP3008) work fine, even through the
protected ports. In Beta-testing, it was discovered that some high-
speed SPI devices, like the PiTFT and other small SPI LCD colour
screens do not play nicely with the protection circuitry. This is not seen
as much of a problem as it falls outside the expected use of the Pro
Hat. But that's what Beta testing is for. Thanks Ton van Overbeek for
discovering that one.

If SPI is enabled on the Pi, the default state is HIGH for GPIOs 7 & 8
(CE0 & CE1). LEDs connected to these ports will be lit unless brought
LOW in software.

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 4 of 24

http://rasp.io/prohat
https://plus.google.com/+TonvanOverbeek/posts/UB7GjNWhmcA

Know Your RasPiO Pro Hat

The RasPiO Pro Hat has been designed to fit any 40-pin consumer
model of Raspberry Pi and make it as easy as possible for people to get
into GPIO Zero programming on the Pi.

The RasPiO Pro Hat has female header sockets to plug in wires and
components. In the wiring diagrams we'll remove these to make things
clearer.

Breadboards give an easy
way to make connections.

The five points in each row
are connected to each other.

But each of the rows
(a, b, c) are completely
separate from each other.

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 5 of 24

Anatomy of RasPiO Pro Hat

http://rasp.io/prohat

Controlling An LED

The very simplest GPIO experiment is to control an LED. So that's
where we'll start.

A light emitting diode (LED) is a small electronic component that gives
out light when electricity is passed through it. Usually when you wire
up an LED, you put a resistor in series with it to limit the current. This
prevents the LED from burning out. But with the RasPiO Pro Hat you
don't need one because all the ports from 2-27 have a 330 Ohm resistor
already on the underside of the board.

LED Circuit

So let's take an LED and a wire or two and make up the following
circuit...

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 6 of 24

Circuit for led control

http://rasp.io/prohat

The longer leg (+) on the LED connects to GPIO5. The shorter leg (-)
connects to GND (ground).
What we now need to do is control GPIO5 to make the LED light up.
When we switch on GPIO5, the LED lights. When we switch off GPIO5 it
goes off. First let's switch it on. Probably the best way to experience
this for the first time is in a live Python environment.

LED In Python Live Environment

Click the terminal icon or choose Menu > Accessories > Terminal
This should open up a fresh new terminal window...

Type python3 and press <ENTER>

You are now in a live Python3 environment.

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 7 of 24

Terminal Window

Python 3 live environment

http://rasp.io/prohat

If you need to get out of it at any time, hit <CTRL> + D

Now let's get coding. Type the following three lines of code, hitting
<ENTER> at the end of each line...

from gpiozero import LED
red = LED(5)
red.on()

...as soon as you hit <ENTER> after red.on() the LED should light up.

Now if you type...

red.off()

...it will switch off. Congratulations. You are now ready to begin taking
over the world. Now try...

red.blink()

...and the LED should blink on and off every second. You can stop it
with...

red.off()

There's another useful function we can use in our programs to change
the state of the LED. If it's ON, it gets turned OFF and vice versa. This is
called toggle(). Try it now a few times...

red.toggle()

...each time you type this, the LED's state should toggle between ON
and OFF.

There are a couple of other useful tricks you can use with LEDs in
GPIOZero...

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 8 of 24

http://rasp.io/prohat

red.pin

…should return the GPIO number that red is attached to. In our case
it's 5. Also...

red.is_lit

...is a way your program can tell if your red LED is lit or not. If lit, it
returns True if not, False. Try this...

red.on()
red.is_lit
red.toggle()
red.is_lit

You should see something like this...

You've now had a good overview of each of the parts of gpiozero.LED

Now exit the Python live session by hitting <CTRL> + D

Incorporating LED In A Program

What we just did is fine in a live Python session, and great for trying
things out in real time. But if you want to store your program to use
again, we'll need to learn a couple more tricks.

Now we're going to write a little program and save it. Type...

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 9 of 24

http://rasp.io/prohat

nano led.py

...and this screen should appear...

Enter the following code...

from gpiozero import LED
from time import sleep
red = LED(5)
red.on()
sleep(2)
red.off()

...then press <CTRL> + O (letter o, not zero) to save it. Then <ENTER> to
confirm the filename led.py

Then press <CTRL> + X to exit nano. Now let's try running the
program. Type...

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 10 of 24

nano - file editor

http://rasp.io/prohat

python3 led.py

What should happen is the LED should switch on for 2 seconds, then it
switches off and the program exits. What we learnt from this was how
to use sleep() to control the timing of the switching.

In line 2 of our code we imported the sleep() function from the time
module.

In line 5 we used sleep(2) to make the program wait for 2 seconds.
You can change this to any figure you like. It can be an integer (whole
number) or a decimal like 3.14 or 0.005, but either way it represents an
amount of time in seconds.

During the sleep(2) the program literally does nothing but wait until
the set time period is over.

The suggested next step is to change the sleep() time to a number of
your choice. You could even add some more red.on(), red.off()
and sleep() lines to make a sequence. To do this you need to edit,
save and run the file as we did before.

If you ever need to stop a python program when it's running, press
<CTRL> + C

Make It Run Forever

If we change our code to this, our LED will flash on and off every 2s...
from gpiozero import LED
from time import sleep
red = LED(5)
while True:
 red.on()
 sleep(2)
 red.off()
 sleep(2)

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 11 of 24

http://rasp.io/prohat

This will run forever. To break out of this program press <CTRL> + C

The new thing here is the while True: loop. This means “repeat all the
indented lines immediately below this one forever”.

The four lines after while True: are all indented with 4 spaces. This is
important in Python. So be sure to get that exactly right or you'll see an
error message. Python uses the indent to determine which code
belongs in which block.

The program will flash the LED on and off every 2 seconds until...
• you hit <CTRL> + C

• an error occurs and the program crashes out

• there's a power outage

Another Way To Pause And Blink

You can do the same thing as the above program another way, with less
code if you use the pause() function from the signal module

from gpiozero import LED
from signal import pause
red = LED(5)
red.blink(on_time=2, off_time=2)
pause()

If you use blink() the default on_time and off_time are both set to
1s. If you want to change them, you need to specify them as in line 4.
The value can be a decimal if you want. You can also omit the keyword
arguments and just use the numbers, in which case on_time is first,
off_time second, giving red.blink(2, 2)

Both work in exactly the same way.

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 12 of 24

http://rasp.io/prohat

PWMLED

So far we've covered simple switching of an LED on and off. But it is
possible to vary the brightness of an LED by switching it on and off
very fast and repeatedly. This is called pulse-width modulation (PWM).
Here's how to use it with an LED.

PWMLED Live Session
Let's go into a live Python session to try it out. Type python3

from gpiozero import PWMLED
red = PWMLED(5)
red.value = 0.1

The red LED should now be dimly lit. It is switched ON and OFF 100
times per second, but is only ON for 10% of the time. Because the
switching is faster than your eye can detect, it looks like it's on all the
time, but not very brightly.

 red.value can be 0.0 to 1.0. Anything outside that range will throw an
error.

To save retyping in a live session, you can use the up arrow  on your
keyboard to bring up the last command then tweak it. Now experiment
with different values for red.value and see how low and how high you
can set it and still see a difference in LED brightness. It will vary,
depending on the LED, your eyesight and lighting conditions.

0.005 to 0.7 makes a visible difference to my eyes with the LED I'm
using. Anything between 0.7-1.0 looks equally bright to me and
anything 0.005 and below looks equally dim.

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 13 of 24

http://rasp.io/prohat

PWMLED In A Program
Now let's write a little program to cycle through brightening and
dimming the LED in turn. <CTRL> + D to exit python3, then nano
ledpwm.py to open nano. You can use other text editors/IDEs too.

from gpiozero import PWMLED
from time import sleep
red = PWMLED(5)
while True:
 for x in range(101):
 red.value = x * 0.01
 sleep(0.02)
 for x in range(100,-1,-1):
 red.value = x * 0.01
 sleep(0.02)

The first four lines should be familiar to you. We're just importing the
required functions, setting up our red LED on GPIO5 for PWM and then
starting a loop that goes on forever.

Let's have a closer look at the next bit...
 for x in range(101):
 red.value = x * 0.01
 sleep(0.02)

for x in range(101): starts a loop counting up from x=0 to x=100
and stopping when it reaches 101.
red.value = x * 0.01 sets our LED's PWM value to a value between
0.0 and 1.0 and then sleep(0.02) pauses for 0.02s. This means our
LED will change brightness setting 50 times per second, which should
give us a fairly smooth visual effect.

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 14 of 24

http://rasp.io/prohat

The second block...
 for x in range(100,-1,-1):
 red.value = x * 0.01
 sleep(0.02)

...does pretty much the same, but in reverse. It counts down from 100
to 0 in steps of -1.
for x in range(100,-1,-1):
literally means count down values of x starting at 100 and stop when
you get to -1 in steps of -1. So the last value used will be 0.

Alternative Way To PWMLED

As before, there is another way to achieve exactly the same thing with
GPIOZero's built-in functions...

from gpiozero import PWMLED
from signal import pause
red = PWMLED(5)
red.blink(on_time=1, off_time=0, fade_in_time=1,
 fade_out_time=1)
pause()

On/off times and fade times are all in seconds.

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 15 of 24

http://rasp.io/prohat

LDR Light Sensor

A light dependent resistor (LDR) is a really useful component for
detecting light and dark. I use a pen lid over the LDR to simulate
darkness, when needed.

LDRs are often used in household security
lights to stop them switching on when it's
light. We're going to use GPIOZero to read an
LDR and report the results on the screen.
Later on, we'll use it to control our LED. First
we need to add a couple of components and
wires to our circuit...

One end of the LDR connects to 3V3 and the other to GPIO21. One end
of the 100nF capacitor connects to GPIO21 and the other to GND.

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 16 of 24

Adding LDR & 100nF capacitor to our circuit

LDR

http://rasp.io/prohat

LDR Code

There's a dedicated function called LightSensor() which we're going
to use. Usage is similar to the LED() function. We set up our LDR on
GPIO21. The simple code below will read ldr ten times per second and
display the status on the screen...

from gpiozero import LightSensor
from time import sleep
ldr = LightSensor(21)
while True:
 if ldr.light_detected:
 print("Light")
 else:
 print("Dark")
 sleep(0.1)

You might want to use the output of
ldr.light_detected to make a decision in your program instead.

Using LDR For Switching

Since we still have the LED hooked up to GPIO5, let's tweak the above
code to control the LED as well. Essentially, we're combining the LED
and LDR code into one program...

from gpiozero import LightSensor, LED # added LED
from time import sleep
red = LED(5)
ldr = LightSensor(21)
while True:
 if ldr.light_detected:
 print("Light")
 red.off() # switch OFF LED if light

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 17 of 24

Screen output of ldr code

http://rasp.io/prohat

 else:
 print("Dark")
 red.on() # switch ON LED if dark
 sleep(0.1)

When you run this code, it will switch OFF the LED if it detects light and
ON if it doesn't detect light.

Variable Brightness LED/LDR

To be a bit more ambitious, we can borrow this example from the
GPIOZero documentation. This code varies the LED brightness using
PWMLED() depending on how much light there is.

from gpiozero import LightSensor, PWMLED
from signal import pause
sensor = LightSensor(21)
led = PWMLED(5)
led.source = sensor.values
pause()

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 18 of 24

http://rasp.io/prohat

RGB LED

An RGB LED is actually three LEDs in one package; Red;
Green; Blue. You can switch each colour independently.
You can even PWM them independently to make pretty
much any colour.

An RGB LED has four pins. The longest one (in our case) is
GND. We're using a common cathode LED.

Red +ve is the pin on its own next to to the long GND pin.
Blue +ve is the other outer pin and Green +ve is between
GND and Blue +ve. Let's wire it up...

RGBLED Circuit

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 19 of 24

RGB LED circuit

http://rasp.io/prohat

RGBLED Live Session

Let's explore this with a live session, as usual, python3
then type the following two lines of code to set things up...

from gpiozero import RGBLED
led = RGBLED(red=17, green=18, blue=19)

In line 2 we're setting up the led object and setting which GPIOs are
red, green and blue. With that done, it's now time to experiment a bit...

led.red = 1
led.red = 0.5
led.red = 0
led.green = 1
led.green = 0.7
led.green = 0
led.blue = 1
led.blue = 0.8
led.blue = 0.2
led.blue = 0

That is how we can control a single colour, setting led.red = anything
between 0 and 1.0. We can also set all three colours in one line using
led.color = () with 0 to 1.0 values for red, green and blue. Let's try
it. (No need to type the comment after the # or the # itself)...

led.color = (1, 1, 1) # white
led.color = (1, 1, 0) # yellow
led.color = (1, 0, 1) # magenta
led.color = (1, 0, 0) # red
led.color = (0, 1, 1) # cyan
led.color = (0, 1, 0) # green
led.color = (0, 0, 1) # blue
led.color = (0, 0, 0) # off (black)

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 20 of 24

http://rasp.io/prohat

This is what my live python3 session looked like...

But don't forget you can use anything between 0 and 1.0 for these
values. e.g. led.color = (0.7,0.2,0.4) is perfectly valid.

Now let's incorporate this into a program...

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 21 of 24

RGB LED live session

http://rasp.io/prohat

RGB LED in a Program

The following program will fade each of the colours, red, green and
blue in and out over a 4 second period. It will keep going until you close
it with <CTRL> + C You can adjust the time delay in line 4 to speed up
or slow down the fading.

from gpiozero import RGBLED
from time import sleep
led = RGBLED(red=17, green=18, blue=19)
delay = 0.02

while True:
 for x in range(100):
 led.red = x/100
 sleep(delay)
 for x in range(100,-1,-1):
 led.red = x/100
 sleep(delay)
 for x in range(100):
 led.green = x/100
 sleep(delay)
 for x in range(100,-1,-1):
 led.green = x/100
 sleep(delay)
 for x in range(100):
 led.blue = x/100
 sleep(delay)
 for x in range(100,-1,-1):
 led.blue = x/100
 sleep(delay)

The for x in range(100): loop cycles through 100 values and the
led.red = x/100 line determines the PWM value (0-1.0) of the led.

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 22 of 24

http://rasp.io/prohat

By now, you won't be overly surprised to hear that you can also do this
with the built-in blink() function of GPIOZero...

Fade RGB LED using built-in blink()

from gpiozero import RGBLED
from time import sleep
led = RGBLED(red=17, green=18, blue=19)

while True:
 led.blink(on_time=0, off_time=0, fade_in_time=2,
 fade_out_time=2, on_color=(1, 0, 0),
 off_color=(0, 0, 0))
 sleep(4)
 led.blink(on_time=0, off_time=0, fade_in_time=2,
 fade_out_time=2, on_color=(0, 1, 0),
 off_color=(0, 0, 0))
 sleep(4)
 led.blink(on_time=0, off_time=0, fade_in_time=2,
 fade_out_time=2, on_color=(0, 0, 1),
 off_color=(0, 0, 0))
 sleep(4)

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 23 of 24

http://rasp.io/prohat

Final Word

You should now have a fairly good overview of the basics of GPIOZero
and using the RasPiO Pro Hat.

I hope you've had a lot of fun with it. There is always more to learn and
further to go. As time goes by, I intend to add more to this guide to
cover more aspects of GPIOZero and more components.

You can check for the latest version at http://rasp.io/prohat

And if you haven't yet got yourself a RasPiO Pro Hat, or need another,
you can get that from here as well...

http://rasp.io/prohat

GPIO Zero Programming With RasPiO Pro Hat v0.1 © Alex Eames 2016 24 of 24

http://rasp.io/prohat
http://rasp.io/prohat
http://rasp.io/prohat
http://rasp.io/prohat

	Protected Ports Perfectly Positioned
	Hardware Technical Overview
	Port Protection
	Hardware Pull-ups
	SPI Limitations
	Know Your RasPiO Pro Hat

	Controlling An LED
	LED Circuit
	LED In Python Live Environment
	Incorporating LED In A Program
	Make It Run Forever
	Another Way To Pause And Blink

	PWMLED
	PWMLED Live Session
	PWMLED In A Program
	Alternative Way To PWMLED

	LDR Light Sensor
	LDR Code
	Using LDR For Switching
	Variable Brightness LED/LDR

	RGB LED
	RGBLED Circuit
	RGBLED Live Session
	Now let's incorporate this into a program...
	RGB LED in a Program
	Fade RGB LED using built-in blink()

	Final Word

