PSR-SCP- 24DC/SSM/2X1 PSR-SPP- 24DC/SSM/2X1

Safety Relay With Downtime Monitoring

INTERFACE

Data Sheet
© PHOENIX CONTACT - 05/2006

Description

The PSR-...- 24DC/SSM/2X1 safety relay can be used in safety circuits according to DIN EN 60204-1/VDE 0113-1. Depending on the external wiring, up to safety category 4 according to EN 954-1 can be achieved. The relay meets the requirements of SIL 3 according to EN 61508. Control is implemented via two PNP or 2-wire proximity switches that switch with a 180° overlap (see "Connection Example" on page 6).

The requirements of the following standards are met once the safety equipment has been in use for the relevant period of time or a function test is carried out (experiment test).

Standard	Level	Period of Use
IEC 61508	SIL 3	48 months
EN 954-1	Cat. 4	12 months

The relay has two positively-driven N/O contacts that meet stop category 0 according to DIN EN 60204-1/NDE 0113-1.

Observe the safety instructions on page 3.

Make sure you always use the latest documentation.
It can be downloaded at www.download.phoenixcontact.com.
A conversion table is available on the Internet at www.download.phoenixcontact.com/general/7000 en 00.pdf.

This data sheet is valid for all products listed on the following page:

Ordering Data

| Safety Relays | | | |
| :--- | :--- | :--- | :--- | :--- |
| Description | Type | Order No. | Pcs./Pkt. |
| Safety relay with downtime monitoring, with screw connection | PSR-SCP- 24DC/SSM/2X1 | 2981567 | 1 |
| Safety relay with downtime monitoring, with spring-cage connection | PSR-SPP- 24DC/SSM/2X1 | 2981570 | 1 |
| Documentation | | | |
| Description | Type | Order No. | Pcs./Pkt. |
| Application manual for PSR safety relays | UM EN SAFETY RELAY APPLICATION | 2888712 | 1 |

Technical Data

Input Data					
Nominal input voltage U_{N}		24 V DC			
Permissible range		0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$			
Typical current consumption at U_{N} (without proximity switch)		60 mA			
Voltage at +S1, +S2		24 V DC			
Typical response time ($\mathrm{K} 1, \mathrm{~K} 2)$ at U_{N}		12 ms			
Typical release time (K1, K2) at U_{N}		8 ms			
Surge protection		Suppressor diode			
Status indicators (K1, K2)		Green LED			
Switching range					
Downtime at Operation at		$\begin{aligned} & <2 \mathrm{~Hz} \\ & >2.5 \mathrm{~Hz} \end{aligned}$			
Cut-off frequency		2 kHz			
Output Data					
Contact type		2 enable current paths, 2 signaling current paths			
Contact material		Silver nickel 15 (AgNi15), hard gold-plated ($5 \mu \mathrm{~m} \mathrm{Au}$)			
Maximum switching voltage		250 V AC/DC			
Minimum switching voltage		$10 \mathrm{~V} \mathrm{AC/DC}$			
Limiting continuous current		5 A			
Total current		On request			
Maximum inrush current		5 A			
Minimum inrush current		10 mA			
Maximum shutdown power		Ohmic load $\tau=0 \mathrm{~ms}$		Inductive load $\tau=40 \mathrm{~ms}$	
	24 V DC	192 W		48 W	
	48 V DC	144 W		24 W	
	110 V DC	88 W		33 W	
	220 V DC	66 W		22 W	
	250 V AC	2000 VA			
Minimum switching power		0.25 W			
Mechanical service life		50×10^{6} cycles, approximately			
Switching capacity		Cycles		DC13	AC15
		360/h:	24 V :	2 A	-
			230 V :	-	3 A
Short-circuit protection of the output circuits, external		6 AgL (a	device C8)		

General Data	
Permissible ambient operating temperature	$-20^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
Nominal operating mode	100\% operating factor
Degree of protection according to VDE 0470-1	
Housing Connection terminal blocks Installation location	$\begin{aligned} & \text { IP40 } \\ & \text { IP20 } \\ & \text { IP54, minimum } \end{aligned}$
Mounting position	Any
Air and creepage distances between circuits Basic insulation ${ }^{1}$	According to EN 60664/VDE 0110
Impulse voltage withstand level	$4 \mathrm{kV}{ }^{1}$
Pollution degree	2
Surge voltage category	III
Dimensions (WxHxD):	
PSR-SCP- 24DC/SSM/2X1 PSR-SPP- 24DC/SSM/2X1	$22.5 \mathrm{~mm} \times 99 \mathrm{~mm} \times 114.5 \mathrm{~mm}$ $22.5 \mathrm{~mm} \times 112 \mathrm{~mm} \times 114.5 \mathrm{~mm}$
Conductor cross section	$0.2 \mathrm{~mm}^{2}$... $2.5 \mathrm{~mm}^{2}$
Housing material	Polyamide PA, not reinforced

Safety Instructions

©

- During operation, parts of electrical switching devices carry hazardous voltages.
- Before working on the device, disconnect the power.
- Please observe the safety regulations of electrical engineering and industrial safety and liability associations.
Disregarding these safety regulations may result in death, serious personal injury or damage to equipment.
- Startup, assembly, modifications, and upgrades may only be carried out by a skilled electrical engineer.

- For emergency stop applications, the machine must be prevented from restarting automatically by a higher-level control system.
- Protective covers must not be removed when operating electrical switching devices.

- In the event of an error, replace the device immediately.
- Repairs, especially if the housing must be opened, may only be carried out by the manufacturer or authorized persons. Otherwise the warranty is invalidated.

The device must be operated in a closed control cabinet (according to EN 61508-6:2001, Table 01).

When operating relay modules the operator must meet the requirements for noise emission for electrical and electronic equipment (EN 61000-6-4) on the contact side and, if required, take appropriate measures.

Structure

PSR-SCP- 24DC/SSM/2X1

PSR-SPP- 24DC/SSM/2X1

Block Diagram

Figure 2 Block diagram

11 MO: Downtime alarm output
12 FO: Error output (+24 V = device OK)
13 IN1, IN2: Proximity switch connection

Function

If the $24 \mathrm{~V} D C$ operating voltage is applied at terminal blocks A1 and A2, the electronics checks (in the stop state) whether at least one of the proximity switches provides a signal at input IN1 or IN2.

The FO diagnostic output indicates the ready state with +24 V . The "Power" and "Mode" LEDs light up. If this is the case (one or both proximity switches provide a signal), the internal output relays switch to the operated condition. N/O contacts 13-14 and 23-24 are closed, N/C contacts 31-32 and 41-42 are open, and the "Output" lights up. Alarm output MO indicates +24 V .
The outputs remain active in their switch position as long as no signal change is generated at inputs IN1 and IN2 by a movement.

N/O contacts 13-14 and 23-24 open and N/C contacts 31-32 and 41-42 close if a signal change with a frequency $>2.5 \mathrm{~Hz}$ is detected at inputs IN 1 and IN2. Alarm output MO is a high-resistance output.

If the input circuit frequency is less than 2 Hz (stop state entered or movement not hazardous), relays K1 and K2 switch. N/O contacts 13-14 and 23-24 are closed and N/C contacts 31-32 and 41-42 are open. Alarm output MO indicates +24 V .

In the event of an error (sensor error), the "Mode" LED flashes and FO is a high-resistance output.

For a connection example, please refer to page 6.

Assembly and Startup

Before working on the device, disconnect the power.

In order to comply with UL approval, use copper cables that are designed for operating temperatures $>75^{\circ} \mathrm{C}$. For reliable and safe-to-touch contacts, strip the cable ends as follows:

Figure 3 PSR-SCP- 24DC/SSM/2X1

Figure $4 \quad$ PSR-SPP- 24DC/SSM/2X1

Mounting the Proximity Switches

Prevent cross circuits between IN1 and IN2 by using a suitable cable installation.

Requirements for a Gearwheel or Gear Rack:

The design of the gearwheel or gear rack is of particular importance for safe operation:

The surface of the gearwheel must always be greater than the gap between the teeth. This ensures that at least one proximity switch is actuated.

Arrangement of the Proximity Switches:

- Tooth > gap
- Tooth > switch diameter
- Depth of gap > switching interval of the switch
- $\mathrm{a} \leq$ (switching interval of the switch/2)

Connection Example

Figure 5 Two-channel downtime monitoring using two PNP or 2-wire proximity switches, suitable up to safety category 3^{*}, SIL 3

* Safety category 4 is possible if a test is performed within 24 hours of machine downtime to detect the internal sensor errors.

